Siunce mux grt.

Bullard's Door Hinge.
The accompanying figures represent a hinge invented by S. M. Bullard, of Holliston, Mass It is intended to serve in lieu of one of the ordinary hinges for doors, gates, blinds or shutters, for the purpose of closing the same by their own weight as the motive power ; it is termed by the inventor a self-closing door hinge.
The hinge is without a spring of any kind, and consists of four parts made of iron or other metal. It involves simply a detached nnti-friction roller, grooved or hollowed on its cdge, moving between two circular inclined planes, which are formed upon the edges of cup-shaped pieces, connected with the flanges of the hinge, the upper inclined plane to the flange attached to the door; and the lower inclined plane to the flange attached to the door frame.
Fig. 1 represents the hinge in the position it assumes when the door is closed. Fig. 2 is a view of the hinge one-quarter open, or in the position it would be when the door was at right angles to its frame. A represents

that portion of the hinge which is secured to the door frame, and B the portion secured to the door, the fastenings being of the ordinary character. A' represents a cup-like projection cast on A, with the hollow part of the cup presented upwards. B^{\prime} represents a corresponding cup fixed on B, with its open por tion downwards. C represents a roller o small wheel, grooved on its edge, and travel ing between the rims of the cups A^{\prime} and B^{\prime} This roller thus receives the whole weight o the door, and as the door is opened or closed by the hand, the roller C travels around between the rims of the respective cups.
Were the rims of the cups perfectly level the wheel or roller C would serve simply as a friction wheel, to facilitate the turning of the door. But this is not the form employed. The rim of the cup A^{\prime} is hollowed out at one point, as represented at the portion RST and the rim of B^{\prime} is also hollowed as repre sented by T S R. The gravity of the door therefore, tends to turn the parts into the position represented in Fig. 1, where the roller C stands between the points $S S$, and allows the door to swing to the lowest practicable position, which is so arranged as to be the shut position. As the door is opened, the roller C is compelled to ascend the gradual
incline S T, on the rim of A^{\prime}, and assume the daty except that of supporting the weight, position shown in Fig. 2, while the same and possesses no ability to resist a lateral motion also compels the inclined surface T S of the $\operatorname{cup} B$ to ride up or mount upon C, so that the action is that of a double inclined plane, and the door is elevated to a considerable extent, reaching, in practice, to one inch, or more if necessary. When the door is open to a certain extent, represented in our engravings as about one quarter of a revolution, the roller C mounts upon the plane or level portion of the respective cups, and from this point any further opening of the door does not raise it. Consequently the roller C serves simply as a friction roller on such portions of the revolution as lie be yond these inclines; but the gravity of the door acts as a weight to draw itself into a shut position, when ver the roller C stands on the respective inclined surfaces between S and T.
It will be seen that this roller performs no
BRADLEY'S SHEEP-SHEARING MACHINE.

The common method of shearing sheep by |over the cutter plate, E. On the neck of and is by the use of a large pair of broad spring-bladed shears, having no pirot or pin like common scissors, but are clasped in the hand, and the blades pressed together to make a clip, then the hand is partially opened for the blades to spring back, then closed again for a succeeding clip, and so on Shearing sheep is a slow operation, and requires considerable practice to make the clips evenly, which is the most important part, because the wool should be shorn as close to he skin as possible, and the clips should be uniform in the depth of cut. By common shears this is not an easy task, for there is no positive guide for the hand of the shearer ; he is therefore liable to make deep and light clips, and oftentimes cuts the animals.
The accompanying figures represent a neat, mall machine for shearing sheep, and is deigne it do the work quicker, and in a more uniform and simple manner than by common sheep shears. The principle upon which the cutters operate is similar to that of harvesting machines, and the operator simply guides the machine over the body of the animal with his left hand, while his right only moves the handle of the cutters backward and forward, giving them a reciprocating cutting ction. Fig. 1 is a perspective view of the machine or instrument, and Fig. 2 is a top view, with the guide box or plates removed, showing the cutter plate and its zigzag guide slot. A is a bottom plate, having a series of fingers, a, on its outer end. The nner end of this plate is attached to a bent tube, B , into which is fitted a rod, C , held by screw. A shoulder piece, D, is secured to this rod by a universal joint. E is a plate having a series of cutters fastened on its outer end, and it is pivoted at E^{\prime} to the lower plate A; its back end rests upon a curved guide, c, which raises it a short distance above the lower plate. There is a zig-zag slot, $e e$, running lengthwise, and in this is inserted the guide pin of handle G. This plate is operated by the handle, and forms a clipping ever vibrating on tbe fulcrum pin, E^{\prime}. A box composed of two side plates, F, and a top
plate with a straight slot, h, in it, is secured
handle G is a square guide collar, H, which moves in grooves in the side plates, F These are all the parts of this sheep-shearing machine, except the binding straps.
Operation.-The shoulder-piece, D, is placed anderthe right shoulder in the armpit, and the instrument is strapp ed to the body. The perator is then ready to commence shearing; he places the point or fingers of the instruentaces the point or fingers of the instruent on that part of the ani mal where ishes to commence catting, then pushe andle G back and forth, thrusting, at the ame time, the instrument forward as fast as he cuts over the body of the sheep until the whole fleece is shorn. The clips are made so as to allow the wool to fold over right and left to give the operator a clear view of what he is doing. The pin of handle, G, in the zigzag slot, e e, gives the cutters a vibrating motion, and they cut like shears as it (the pin) s moved back and forth by the handle. Five clips in each direction are made while the handle is moved back and forth. The cutters, therefore, are capable of receiving a very rapid motion, and the fingers, a, enable a cut of a uniform depth to be taken throughout the whole operation.
This machine or instrument for shearing sheep is of simple construction, and it can be operated with great dexterity and ease, as the universal joint of the crutch allows grea freedom of movement to the operator. A patent was granted for it on the 27th o January last to R. P. Bradley, of Cuyahoga Falls, Ohio, from whom further informatio may be obtained by mail.

Ohio Cannel Coal and Coal Oil
A company has been organized, and has purchased a considerable extent of canne coal lands in the counties of Coshocton, Mus kingum and Licking, in Ohio. Some of the seams are seven feet thick, and the coal is of the best quality. This company is now erectthe best quality. This company is now erect ing substantial brick buildings in Newark, Ohio, for the manufacture of coal oil, and
also to supply that city with gas. These works are expected to be in full operation in the month of September next.

Dining Talles at Sea
A correspondent of the London Mechanics' Magazine proposes the following mode of constructing tables, in order that they may keep their horizontal position when a vessel is in

motion. The table, T, moves by means of a ball fixed in the socket, S, which is fastened to the deck. W W are weights which preserveit in a horizontal position. The same principle, he urges, would of course apply to many forms.

Fair of the Tennessee Mechanics' Institute. The third annual fair of the above institution, as will be found by reference to our advertising columns, is to be held in the city of Nashville, in the month of October next Exhibitors from a!l parts of the country are invited to enter articles to compete for the premiums. This is a spirited Mechanics Institute, designed to advance manufactures and the arts in the State of Tennessee. We trust that the mechanics, manufacturers and priculturists of Tennessee will not coun upon sacrifices in endeavoring to make this fair the very best they have yet held

Inventors, and Manufacturers
TWELFTH YEAR.
Prospectus of the
SCIENTIFIC AMERICAN.
This work differs materially from other publications being an ILL USTRATED PERIODICAL, devoted chiefto the promulgation of information relating to the va tures, Agriculture Patents, Inventions, Engineering, Mill work, and all interests which the lightof PRACTICAL SCIENCE is calculated to advance.
The SCIENTIFIC AMERICAN is printed once a
week, in convenient quarto sents an elegant typographical appearance. Every num ber contains Eight Large Pages, of reading, abundantly illustrated with original engraving -all of them engraved expressily for this publication
All the most valuable patented discoveries are delinea cod and described in its issues, so that, as respects inven tions. it may be justly regarded as an ILLUSTRATED
REPERTOR Y, where the inventor may learn what has been done before him, and where he may bring to the world a KNOW LEDGE of his own achievements. Mechanics, Inventors, Engineers, Chemists, Manufac urers, Agriculturists, and People of cevery Profession $2 n$ Life, will find the SCIENTIFIC AMERICAN to be of great value in their respective calling.
REPORTS OF U. S. PATENTS granted are also pub PATENT CLAIMS. These Claims are published in the Scientific Amprican in advance of all other pa pers.
Mo uchmightbe added in this Prospectus, to prove that ery Tnited States should patronize, bund Engineer in the oo thoroughly known throughout the country that wo effrain from occupying furt her space.
Its counsels and suggestions will save them Hundred Dollars annually, besides affording them continual ond pecuniary estimate.
TERMS OF SUBSCRIPTION- $\$ 2$ a year, or $\$ 1$ for six months

CLUB RATES.

Five Copies for Six Months,

Ten Copies for Six Months
Ton Copies forTwelve Mont
Fifteen Copies for Twelve Mor,
Twenty Copies for Twelve Month only 8140 .
Post-pay all letters and direct to
UUNN \& CO

