Virsinia Mechanics' Institute
The Cotton Plant of the 20th ult. contains the address of Governor Wise, of Virginia recently delivered before the above named institution, organized in the city of Richmond. It is an eloquent production, and it affords us pleasure to place some extracts from it before our readers :-
"The utility of Mechanics' Institutes is at once presented to the mind by the wonderful developments of the age in improvement. The Titans and the Tubal Cains are at work among men, and the Vulcans are thundering on their anvils among the gods. The enterprises of earth are so monstrous that piety is almost afraid lest human power is exceeding the bounds of humility toward heaven. Never iu any age was there such a stir amidst the atoms of matter. Material nature is vexed in all the dust of her dominion, and earth and air, and ocean and light, in all their parts and elements, are put into the whirl of motion. The years of old Time are quickened into seconds; the miles of space are shortened to a $\mathrm{sp}: \mathrm{n}$; power is multiplied in the ratio frow the mere might of animal muscle to the fearful potence of steam and electricity; a farthing candle is turned into more than 'Aladdin' lamp,' which pours its floods of light over cities, and along pavements and highways; and the sun himself has turned painter and printer.

The result of this
is plenty of food and raiment, and locomotion without limit, and habitations up to crystal palaces, and all the world for immediate neighborhood by a quick intelligence, and human comforts and luxuries of mind and body, which exalt and dignify us with civilization which the world has never known before, and which, guided by a sound Christian philosoply, foreshadows 'peace on earth and goodwill to man (Cheers.) Wonderful! wonderful ! and all these wonders come from the wand of mechanism! Every humble operative in the world contributes to the grand result. Toil on, then, patient and lonely laborer! To invent, to apply, to control, to guide this magic power, is the necessity for Mechanics' Institutes. They are founded on the co-operation of labor, and the principle that industry is essentially social

The objects of Mechanics Institutes are :-

1. To perfect the mechanic arts. So impor tant is this that every source of power and production depends upon them, and the people who do not keep pace with their improvements and who do not make their products of themselves, will fall back in the race of nations. Agriculture depends upon them and their perfection for all its implements-its plows, its chains, its sowing and planting and reaping machines. Manufacturing and mining and the forests depend upon them for all their machinery-their engines, their levers, their shafts, their spinning jennies, their planing machines, their machine seamstresses, their saw mills, their grinding mills, their every variety of cogs and wheels, in all the mazes of minute and mammoth construction. Commerce is dependent upon them for its ships and its cars, and for all the appliances of transportation and navigation, by land and by sea.

And the learned pro-fessions-theology, law, and medicine-are really dependent upon the mechanic arts for their perfection. Where would all have been but for the mechanism of printing? But the tongues of men and angels could not enumerate these innumerable dependencies. They are infinite in variety and connection.
2. The object of the Institutes is to exalt the dignity of mechanic labor. Who shall despise the arts upon which all else is dependent? What civilization shall despise a labor upon which every civilization depends? Who shall tread upon the arts by which man is fed and clothed and housed and transported, and is raised to refinement, and the taste of the fine arts, and the enjoyment of an elevation in the moral scale which cannot be reached but by physical improvements? Morse is a mechanic, Fulton was a mechanic, Franklin was a mechanic, Sir Christopher Wren was a mechanic, God is a mechanic.
3. The third ohject of the Mechanics' Institutes is to multiply occupations among men particularly in the agricultural States.

A few professions and vocations in a nation will not and cannot support a dense popula tion and raise a people to wealth and power and sustain them in any grand progress. Virginia has heretofore been peopled by
planters, divines, lawyers, doctors and manual planters, divines, lawyers, doctors and manual
operatives. She has not been distinguished operatives. She has not been distinguished
at all for mechanism, and has relied mainly upon one power only for production-the science of agriculture. The mechanic arts have not been honored, fostered and promoted as they must be, and as our best interests require. I rejoice that Richmond and Lynch burg, Petersburg and Wheeling, are beginning to lay hold on this lever of power and progress. Never was there such a workshop for
mechanics as Virginia now is. She has inex mechanics as Virginia now is. She has inex haustible mines of iron coal, copper and salt, and interminable forests of timber. Wood iron and coal are all that mechanics want. All we want is for the popular mind to be aroused, and for the proper beginning in the
right way to be made. And though we right way to be made. And though we have reason proudly to thank some benefactors, such as an Anderson, of Richmond, (proprietor of the Tredegar Iron Works;) and a Sweeney, of Wheeling, and othess, their fellow laborers and coadjutors, for pioneering in the work, yet we can hardly be said to have made a beginning. The ghost of Jefferson would vanish with shame were it to come and be old that we still buy our household furniture and utensils, our plows, hoes, axes and helves, and ox yokes, horse buckets, broom handles, brooms, clothes-pins, carriages, harness, and clothes, hats, shoes, boots, coats, vests, pants, everything-something of everything from Old nd New England."
The above are only a few extracts from this ddress; they will show that Governor Wise reated the subject in a broad, generous, common sense and elegant manner. We hope his words will have a powerful effect in arousing the people of Virginia to a sense of their responsibility in cultivating the mechanic arts. Preparations for Laving the Atlantic Tele-

The frigate Niagara was expected to be complete in her alterations on the 20th ult., on which day she was to leave Portsmouth for Liverpool to take in her share of the submarine cable. It is to be stowed in five separate coils, connected together, each wound around a large wooden cone, to prevent fouling when running off. Two coils will be placed aft, the lower one on the "orlop," and the second one on the "berth deck;" the three other coils placed forward will be arranged one above the other on separate ranged one above the other on separate
decks, the lower one being on the hold floor. decks, the lower one being on the hold floor.
The cable will be run out at the stern The cable will be run out at the stern
through a hollow cone, and pass over friction rollers. It weighs nearly one tun to the mile, and will be 1250 miles long. This cable is now finished, and lying at Birkenhoad. It was completed by the contractors, Messrs. Newall, of Liverpool, in eighty days, three weeks before their term for executing it had expired. The manufacture of the cable employed 100 machines for making spun yarn, with which the gutta percha insulation is covered. The cable consists of a mainstrand of 7 copper wires covered with three coats of gutta percha, served from end to end with the spun yarn, and over this are laid eighteen strands of twisted wires, seven wires in each strand, forming the exterior of the cable. There are in all 25,000 miles of covering strand - total wires, 175,000 miles - long enough to go seven times round the world.
When the cable was finished, on the 8th of June, the contractors gave a dinner to the workmen employed on it and to their wives, seven hundred being present at the party. On that occasion, W. Reid, an electric engineer, who was present, stated that he had made an experiment with the cable that day, and had established perfect telegraphic communication through its whole length with a very minute battery which he exhibited, the plates of which were only one quarter of an inch square. It is no doubt much easier to work a telegraph on land than in water, but several engineers present who had doubted the practicability of working the cable had their doubts removed by Mr. Reid's statement.
The Atlantic Telegraph and the steamship

Great Eastern are the two most gigantic en Great Eastern are the two
terprises of the present age.
mbridge Professors and the Spiritualist
Some time since, an offer of $\$ 500$ was made through the Boston Courier to any one who could exhibit in the presence ana to the satisfaction of certain Professors of the Natural Sciences in Harvard University, any such marvelous phenomena as were commonly reported by spiritualists as having transpired hrough the agency of "mediums." This challenge was accepted, through Dr. Gardner, and several persons professing to have siritual communications, met in the Albion Building, Boston, on the last week of June to show their powers, and among the numbe were the "Fox girls," so celebrated for their achievements in this line.
The committee appointed to judge in the case, consisted of Professors Pierce, Agassiz, Gould, and Horsford, of Cambridge. The spiritual experiments were conducted for several days, and the mediums allowed ample and fine opportunities of making demonstrations; but like the priests of Baal, in the days of Elijah, they failed to call down their deities.
The following is a portion of the report of we committee:-
"The committee award, that Dr. Gurdner, having failed to produce before them an agent or medium who 'communicated a word imparted to the spirits in an adjoining room,' who read a word in English, written inside a book or folded sheet of paper,' who answered any question 'which the superior iatelligences must be able to answer,' 'who tilted a piano without touching it, or caused a chair to move a foot;' and having failed to exhibit to the committee any phenomenon which, under the widest latitude of interpretation, could be regarded as equivalent to either of these proposed tests, or any phenomenon which required for its production, or in any manner indicated a force which could technically be denominated spiritual, or which was hitherto unknown to science, or a phenomenon of which the cause was not palpable to the committee, is, therefore, not entitled to claim from the Boston Courier the proposed premium of $\$ 500 . "$

stopping Table Turning.

One of our exchanges states that Professor Leibig stopped table turning in Munich Bavaria, by a very simple expedient. It seems that table turning succeeded marvel ously in that city for a short time when it
was first tried, and intelligent people were was first tried, and intelligent people were amazed at the phenomenon, and really believed,
either that spiritual forces were at work in the mahogany or that some new physical power was unfolding itself. "They naturally went to the great philosopher to obtain his opinion. He simply said: ' Place your hands under the table, and not on it.' They did so and no table, however light, though running on castors over the polished floor under the smallest impulsion, would budge a hair's breadth. The good people of Munich, again astonished at the facility with which they had deceived themselves, thanked Liebig for opening their eyes; for it is not the custom there to consult men of science on obscure subjects, and then abuse them if their opinions do not happen to coincide with the popular madness of the hour-the table turning has never course, was the since. The wer the table, they could not push it without conscious effort, inasmuch as the force of gravitation was against them. And, as they were honest people, they would not push, and as the table was an honest table, it would not go."

Care of China and Glas

The manufacture of pottery in all its branches of earthenware, china, delfware porcelain, \&c., is now denominated the Ceramic art. This name, which is derived from the Greek, signifying burnt clay, was originally given to the art of pottery by the French. Like many other arts, it had its rise prior to the known date of its history; but from the period when Jeremiah was com-
the Ceramic art has till the present day been steadily improving, calling to its aid every resource of mechanical and chemical science to co-operate with painting and sculpture, till at length it has become one of the most valuable departments of the industry of all nations. When common clay is molded into a form and baked, it is called earthenware, and it is pretty certain that this was the first step in the art of pottery. When clay is mixed with flinty earth, and afterwards baked, it forms a semi-transparent mass; and as this compound was first known in China, and imported from that country into England, the ware thus made received its present familiar name of china." A similar compound was first made in Europe, in the island of Majorca, about 450 years ago. The articles there made were called "porcelana," from the Portuguese word, which interpreted means "a cup;" and hence we have the word porcelain, to denote the finer kinds of pottery.
One great object for those who have sets of china or glass is to render it capable of withstanding a sudden change of temperature, so that it will be capable of exposure to sudden heat and cold without being broken. This is best done by placing the articles in cold water, which must gradually be brought to the boiling point, and then allowed to cool very slowly, taking a whole day or moie to do it. The commoner the materials the more care in this respect is required. The very best glass and china is always well seasoned, or "annealed," as the manufacturers say, before it is sold. If the wares are properly seasoned in this way, they may be "washed up" in boiling water without fear of fracture, except in frosty weather, when, even with the best annealed wares, care must be taken not to place them suddenly in too hot water. All china that has any gilding upon it must on no account be rubbed with a cloth of any kind, but merely rinsed, first in hot and after wards in cold water, and then left to drain till dry. If the gilding is very dull, and re quires polishing, it may now and then be rubbed with a soft wash-leather and a little dry whiting; but remember, this operation must not be repeated more than once a year, otherwise the gold will most certainly be rubbed off, and the china spoiled. When the lates, \&c., are put array in the china closet a piece of paper should be placed between each, to prevent scratches. Whenever they "clatter," the glaze or painting is sustaining some injury, as the bottom of all ware has little particles of sand adhering to it, picked up from the oven wherein it was glazed. The china closet should be in a dry situation, as a damp closet will soon tarnish the gilding of the best crockery
In a common dinner service it is a great evil to make the plates too hot, as it invariably cracks the glaze on the surface, if not the plate itself. We all know the result-it comes apart; "nobody broke it," "it was cracked efore," or "cracked a long time ago." The act is, that when the glaze is injured, every time the "things" are washed the water gets to the interior, swells the porous clay, and makes the whole fabric rotten. In this condition they will also absorb grease; and being made too hot again, the grease makes the dishes brown and discolored. If an old, illused dish be made very hot indeed, a teaspoonful of fat will be seen to exude from the minute fissures upon its surface. These latter emarks apply more particularly to common wares.
In a general way, warm water and a soft cloth is all that is required to keep glass in good condition; but water bottles and wine decanters, in order to keep them bright, must be rinsed out with a little muriatic acid, which is the only substance that will remove he fur which collects in them; and this acid is far better than ashes, sand, or shot ; for the ashes and sand scratch the glass, and if any of the shots are left in by accident the lead is poisonous. A little soda dissolved in warm water, is also very excellent for washing bottles.
Richly cut glass must be cleaned and polished with a brush like a plate-brush ocasionally rubbed with chalk; by this means the luster and brilliancy are preserved.

