Sphygmoscore.
The accompanying figures illustrate a rew instrumeni for indicating the movements on ${ }_{i}^{R}$ the heart and blood vessels, invented by Dr. Scott Alison, London.
The sphygmoscope consists of a smail chamber containing alcohol, or other liquid, propided with a thin india rubber wall, where it is to be applied to the chest. At the op. posite ex:remity the chamber communicates wiih a giass tube, which rises to some high ${ }^{\circ}$ ajove its level-the chamber. Liquid is supplied to the instrument until it stands ia ;he tube a little above the level of the chamber. The pressure cf the column of liquid in the taije asts upon the elastic or yielaing wall of india runber, and causes it to protrade. This protruding part, or chest-piece, is very readily affected by external impulse; it yields to the slightest touch, and, being pasied inwards, causes a displacement of the liquid in the non-elastic chamber, and iorces a portion or liaquid up the tube. The protruding wall of india rubber is driven inwards when it is brought in contact with that portion of the chest which is struck by the apex of the heart, and a rise in the tube takes place. When the heari retires, the india rubber wall, affected by the pressure of the column of liquid in the tabs, is pressed back, follows the chest, and permits the liquid to descend. The degree to which the india rujber wall is forced in by the tube, and the amount of protrusion of the india rubber wall which takes place when the heart retires is denoted oy a corresponding fall in the tube. The tube is supplied with a graduated scale, to denote the rise and fall with exacritude. The glass tube is provided at the top with a brass screw and collar, to prevent ihe egress of the liquid when the in strument is not in use, or a bulb with an orifice may be supplied. When employed, the glass tube is left open to permiit of the pas sage of the air to and fro.
Fig. 1 represents an instrument without a a stand ; fig. 2 is another form of it wilhout a stand; and fig. 3 is the most periect form but is not quite so convenient.
The glass tnbe is a joot or more long, and the round bore is about the one-eighth part o an inch. If the bore be much larger, the movement will be inconsiderable; if much less, capillary aitraction will interfere and prevent Áree motion.
When the instrument (fig. 3:) is to be employed, mounted upon its stand, it is placed upon a firm table with the chamber projecting beyond it. The person whose heart is to be examined is seated upon a firm chair, with his chest erect and free from motion. The protruding india rubber wall of the chamber, or chest-piece, is delicately made to receive the blow of the apex of the heart. The liquid in the tube is now observed to be in motion. With persons in ordinary health, the liquid rises and falls about an inch. This rise and fall, after taking place three or four times, is followed by a much longer rise and fall to the extent of three or four inches, due to the advancement and retirement of the wall of the chest during the acts of respiration. The shorter rise and fall are again repeated, and are again followed by the longer rise and fall caused by the motions of the chest. During the longer rise and fall due to respiration, the beat and retreat of the heart are still to be recognized by brief interruptions in the rise and fall of the liquid. Thin persons are very favorable for examination; on the other hand, the corpulent, less readily affect the instrument. Placed upon the heart it indicates stroles of that org:n which are so feeble as to have no corresponding pulse at the wrist.
No pause whatever in the movement of the liquid has been at any time observed when the sphygmoscope has been careiully placed so as to receive the full beat, and sall back wish freedom. This would go so show that the heart, however slow, is in constant motion, and, contrary to the belies of nany physiologists, eujoys no pause. There is no pause in the descent of the 'iquid, which takes place when the heart retires from the íhoracic walls, in the middle or̂ which movement it has Deen said a very shöt pause is to be observed in living animals having the heart exposed.

When the heart is excited, the liquid in the
but the rise and fall of the excited enlarged heart is much the same as the rise and fall of the excited normal organ. For the most part, the enlarged heart gives movements to the instrument when placed upon ihe ribs and siernum, whilst ihe normally sized heart affects is moze exclusively when it is placed upon the The sphygm space.
The sphygmoscope indicates with exaccicude both the absoluse and the comparative inflyences upon the heart, of food, cordials, stimulants, and tonic medicines. It does tine same in respect to depressing causes, such as hunger, cold, and sedatives. With the aid of inis instrument the fact is demonstrated tha the action of the hearl may be great when tha pulse is small, that the heart may strike the instrument with force when the pulse scarcely affects the liquid of the hand sphygmoscopc. It affords proof that the pulse is one thing, and the heart's action another, and teaches that the pulse is only an approximate sign of the state of the heart. It is found also, that while cold at the surface and extremities may depress the pulse, the heart may remain little

enifiebled, or even become excited, and that warmth and friction applied to the extremities may cause an excited pnlse withou ${ }^{+}$there being any accompanying increased force of the heart.
The sphygmoscope (6g. 2,) having a level elastic wall instead of a protruding one, and having a glass tube with an almost capillary bore, forms a remarka.bly delicate indicator of the pulse. It is so delicate in its impressions that it is appreciably affected by the regurgitant wave in the jugular veins, and iy the wave in arteries much smaller than the radial. From its nicety in manifesting the beat of the blood-wave, it is very valuable.
By means of this hand instrument applied to the arteries a comparison is readily made between the time of the beat of the heart and the rise of the arteries under the influence of the blood-wave. This instrument is much more delicate than the finger in such an inquiry. The impressions made upon the fingers of two hands fail to be conveyed with sufficient nicety to the mind to tell with certainty the relative time of the beai oif the heari and arteries. Except in cases of exireme slowness, the sensations obtained from the two hands impressed at nearly the same time do not admit of a distinct difference in respect to time being made oui. It has been to this very defect ine erroneous idea, that the beat of ihe heart and the beat of the pulse are synchroncus, or nearly so, owes its origin and continuance.
The hand sphygmoscope placed upon the ibe radial artery: shows a rise of the liquid while there is a fal! 'r the sphygmoscope placed over the heart. As jhe liquid in the one instrumeni starts from below; the liquic in the other slatts fiom inove, and as the iquid in the ore zaches the op of its asien. the liquid in the other :eaches the bosiom 0 . or its ciescent, to renew iheir opposing course.
The movements in the two instruments at the
same instant are always opposed, and the whole time occupied in the movereat of one instrumeni: 1 one direc ion anpears to ie occuopied by the movemeni of the ouher in ihe opposite direction. The movements alter nat wish as much epparent exactivude as the prm 3 of a well-adjusied balance. When the lapse
of time between the beat of the heart and ine pulse ấ the wrisi was first observed, suspicion of disease of the aorta was entertained, but the subsequent ezamination of many persons proved that this alternation was naiural. In ome twenty persons subjected to examina tion, the complete allernation has been made out without the shadow of a doubt. These peesons were of all ages above childhood, and had the pulse of differ cant degrees of rapiciiiy, rom 60 to 100 .
Hand sphygmoscopes nolaced upon the caroinc., the barachial, the radial, the femoral, and the dorsal antery of the foot, rise at the same instant, and fa'l at the same point of time.
These facts prove the existence of two geeat aws noi peeviously enuriated-fisst, thai the heart's beet alternates with the pulse at the wrist ; se sondly: that the pulse o? arte:ies beyond the chast ta res place in all pa:ts at the same instant, and without any aporeciable in乞erval.
The sphy scope. It delicately measures the rise and fall of the chest in resoiration. It likewise declares the relative diration of inspizaciic? and expization, and may thus prove useíai in the detection of incipient phithsis; and other pulmonary diseases. When the liquid has at'ained its highess elevation at the end of iıspiration, it immediarelv begins to fall; but when it has reached the lowest point at the end of expiration is remains there some instarts. The ascent is slower than the descent. Afier the fall of an ordinary expiration a forced expiration gives a second fall.

The sphygmoscope (fig. 1,) nay be employed wiuhout a stand, and is then more portable; but f.om the want of a fixed basis, and fom the motion of the ribs on which it musi nest. its maniíestations a:a less extensive and saíisfactory. When emoloyed wihhout a stand, as it must rest upon the ribs, the elas:ic wall of the thambei should be plain, and not proiruding.

The Mental Faculties and Phrenoiges. Our actual experience of the human mind is only as we fnd it in combination with corporeal organs. Sir Benjamin Brodie places its seat in the brain, which he states is ccmposed of a congeries of organs, each having its peculiar function, and yet, he believes, that what has been taught as the science of phrenolo
says:-
${ }^{6}$ Now, there are two simple anatomice facts which the founders of this system have overlooked, or with which they were probably unacquainted, and which of themselves affor a sufficient contradiction of it. First, They refer the mere animal propensities chiefly to the posterior lobes and the intellectual faculties to the anierior lobes of the cerebrum; but the fact is, that the posterior lobes exist only in the human brain, and in that of some of the tribe of monkeys, and are absolutely wanting in quadrupeds. Of this there is no more doubt than there is of any other of the best established facts in anatomy; so that, if phrenology be here, the most marked distinction between man on the one hand, and a cat or a horse, or a sheep, on the other, it ought
to be, uhat the former has the animal propen. sities developed to thei: fullest extent, and that these are deficient in the laiter. Second, Eirds have various propensities and faculties in common with us, and in the writings of phrenologists many of their illustrations are derived from this class of vertebral animals ; but the structure of the bird's brain is essentially different, not only from that of the human brain, but from that of the brain of the mammalia generally."
And yet, if it is admitted that the brain is congeries of organs, it seems to us ihat there is a foundation for the science of phrenology. As a science, however, it must be very uncertain, because it is principally
based on the formation of the casket which cond on the formation of the casket which
contans organs, not the organs themselves.

Cremona Violings.
We are indebted to Mr. W. Hudswell, of this city, for posiing us up somewhat on the bove sujject. Dr. Lee, who was lec urer in St. Thomas' Hospitel, London, and an accomplished amateur performer on the violin entertained a great passion iñ the instruments themselves, ard madehundreds of experiments to find out the cause of the superiority of ione in the Cemona. He had a fine Cremona taken to pisces, and a number of new insiruments made in every part ezacily like it, and yet none of them equalled it in tone. He thus found out that it was not a oaricic:lar form which gave these instruments a superioxity over all oihers. He then ezperimented with various kinds of wood, and also treated the same sori of wood in various ways, in order to discover if this was the cause. For example, he steepad some in alcohol, others in oi', then dried them, and had them made of the genuine Cremona shave. All these efforts however, were vain; the old Cremona sung sweedy over them all. At last it struck him that there might be something in the varnish connected with the subject, and he discovered that amber varnish was the coating of old Cremo. To work at varnishes he then went, (for he was a determined experimenter and a good chemist, and at last he made a grand hic. By making amber varnish in the same way that copal varnish is made: namely, by heating the amber, then pouring hot oil uoon it, he obtained a varnish which, when applied to his violins, improved their tones in a wonderful manner. This varnish takes a long time to become periectly dry. The violins to which it is appiied have to be hung up in the open a:r for morihs before they lose their tacky character, but when perfectly dry it is the grand solveni of the Cremona's superiority. Severia, the famoas violinist, and punil of Paganini w as presented with one of Dr. Lee's viohns, and he declared it was equal to a Cremona; or twenty violins in his possession it was excelled only by one, while it was suverior to all the others.

Gam and starch.
Chemistry is the most wonderful of all sciences, abounding as it does in such curious transiormations. There is the substance siarch so generally used, and so universa!ly known. It is not soluile in waier, bait by a very simple process, it can be converted into a gam, known by the name of "dextrine." The process for accomplishing this result may be varied, but the folloving is among the most simple and recent :-
It consists in moistening one tun of dry starch with water containing four and onehalf pounds of strong nitric acid. The starch, thus uniformly wetted, is made up into small bricks or loaves, and dried in a stove. It is then rubbed down into a coarse powder, and exposed in a room to a stream of air: heated to about 160 degrees Fahr. Being now triurated, sifted, and heated in an oven to bout 228 degrees, it forms a perfect dextrine of a tair color, and soluble in water
Deztrine is now extensively employed in giving body and adhesive qualities to colors employed in printed paper, calicos and woolen fabrics. It is also used for dressing colored muslins, also as a paste or size for painters, and for many purposes as a substiute for gum-arabic and fine glue, it being so much cheaper than these substances. By moisture and heat alone in an oven, starch may also be convertad into dexirine

Western Grain.

The Chicago Magazine (a new and very seful monthly) states that $20,086,616$ bushe's of grain were exported riom that ciivy last year. Il also says: "I $i \grave{h a s}$ been estimated that the average amouni of grain transported ezch season jetween Chicago and Buffalo is 150,000 bnshels by a good propeller, and 80,000 by a brig." At this rate, the above amonnt of grain requires a marine equal to 50 propellers and 150 brigs to transport it to the Eastern markets, supposing each to make bnt one trip during the season.
We would call the attention of our readers the advertisement of the "American Alarm Telegraph" in anoíher column.

