Srimutifit Ameritun.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS VOLUME XII.

NUMBER 40.

Scientific American,

 pUbLISHED WEEKLyAt 128 Fultonstreet, N. Y. (Sun Buildings.) BY MUNN \& CO.
o. D. MUNN, B. H. WALES, A. B. BIAOH. Responsible Agentsmay also be found in all the prin
cipal cities and towns in the United States.

 THEMS- ${ }^{2}$ a

$\xrightarrow{\square} \mathrm{S}$ Soo

Permanent Way of Rallroad
A very interesting discussion recently took place on the above subject at a meeting o the Societyof Engineers in London. It arose from the reading of two papers on the sub-ject-one by W. Bridges Adams, C. E., and and another by P. M. Parsons, C. E. The facts elicited were of considerable importance. It was stated that one thousand miles (single line) of iron permanent way had been laid in England, and that Greaves' system (illustrated on page 89, this vol., Scientific Ame aICAN,) had been extensively and satisfactoril g used in Egypt. As to the assumed rigidity of cast iron permanent way, an ohjection urged against this system by some persons, this had been demonstrated to be a fallacy. It was found after a number of years of hard usage to be in an excellent state of preservation, and had not produced any injurious effect upon the rolling stock-engines and cars. The general opinion of the engineers present seemed to be that cast iron sleepers were preferable to those of wood.

Curious Chemical Exnlosion.

On the 25th ult., while the assistant of Professor Doremus was preparing some oxy gen gas, in the laboratory of the Medical College, this city, from the chlorate of potash the receiver exploded with terrific violence, shattering the windows and otherwise doing considerable damage. At the time this acci dent took place, neither the Professor nor any other person could account for its cause The gas itself is not explosive. What, then was the cause? Tue flask containing the chlorate of potash, from which the gas was generated, became red hot, consequently the gas passed over in a highly heated state. In this condition, it is believed, it decomposed a portion of the receiver, which was india rubber, converting it into carburetted hydrogen gas, which being saturated with the oxygen acquired a highly explosive character and was ignited by the hot oxygen.

The Menal Tubular Bridge.

The Philadelphia Ledger, which is usually so correct in mechanical matters, gives Brunel, Jr., too much credit in attributing to him the authorship of the above named celebrated bridge. William Fairbairn, C. E., discovered the best form of bridge, and he certainly is the inventor of it, as it is now constructed. Brunel, Jr., had nothing to d

Caution to Flles, Mosquitoes. Roaches \&e We have received from Mr. I. S. Clough, inventor, 168 Broadway this city, some samples of his ingenious fy, mosquito, and roach traps. They are sure death to all unfortunate vermin which enter. We havo seen practical evidence of this fact. These traps are particularly useful at this season of the year and as they are cheap in price and ornamen tal in appearance, they will please everybody

Although in large towns and under favor- |iron, or any suitable material slightly tapered ble circumstances for the introduction of the uccessive innovations, it may with propriety be said that candles have long since given way to oil, and this again to burning fluid, which latter has heen, in turn, superceded by gas, there are peculiar conveniences attending the use of the ordinary tallow candle, which will prohahly forever create for it an extensive demand. The many processes for forming these may be included under the heads either of dipping or molding, and the superior perfection of the product induces a strong preference for the latter. There are several machines in use to facilitate the manufacture by this method of these important illuminatrs, one of the most important and efficient of which is represented in the accompanying engraving. The wicks are drawn, by an automatic movement, through the mold, and held in place, while the melted tallow, poured by hand, congeals around them, and the finished candles are expelled by an easy movement, and conveniently removed in dozens or hundreds at a time, by the aid of simple lamps which grasp them.
The machine is a tolerably simple construction of moderate size, as represented in the accompanying illustration. The view is aken at a moment when the candles have just been thrust up from the molds, and are in the act of being seized by the clamps for emoval.
A represents the candles, which are molded base uppermost. B are the molds of tinned $\left\lvert\, \begin{aligned} & \text { volved in such manner as to lower the racks, }\end{aligned}\right.$

C is the flooring on which the molds are sup ported, and which is, in some of these constructions, lined with lead, and made to support ice water, which surrounds the molds, B to hasten the cooling. D represents a movable platform capable of sliding vertically in the slots at each extremity, and attached to which are racks, E E, operated by the crank F , which is turned by hand. Fixed in D are tubes or hollow plungers, smaller than the candles, through which the wicks, K, are led from the spools, L, below. When the candles are sufficiently cooled in the molds, revolving the crank, F, elevates, D, and consequently thrusts them out at the top as represented. The upper ends of the tubes or hollow plungers are spread and made to fit nicely to the ends of the candles, as shown at the lower extremities of A . To facilitate the pouring of the tallow into the molds after the frame, D, has been depressed by a counter revolution of the crank, F, the cast iron troughs, J, are provided at the top as represented. G repre sents the clamps, each of which are composed of four parts, to embrace two rows of candles, all operated by one movement of the handles, H. These clamps are supported on the stand ards, I, and may be readily removed by hand to deposit them in the boxes.
The operation of candle making by thi machine is simply as follows:-Commencing with the parts in the nosition represente the pawl is elevated, and the crank, F, re-

E, thus depressing the platform, D, and drawing downwards the hollow plunger through the molds. The wicks being still fast to the candles above, remain, of course, stationary. When D is in its lowest position, the troughs, J , are filled with tallow from the ladle, and after a few minutes cooling, the wicks connected to A, are cut by a rapid movement of a long handled knife, and the link represented being previously on the handles, H , the clamps, G, are lifted, and the candles, A, removed. Meantime the tallow in B has been rapidly cooling, and after a length of time depending on the temperature of the air, or of the wator surrounding B , the superfluous tallow and wiching is scraped from the molds by an implement made to traverse in J, and the clamps, G, having been placed on the uprights, I, and opened as widely as possible to allow the easy ascent of the still somewhat soft candles, the crank, F, is moderately revolved, and the lot of candles gradually lifted, drawing with them the wicks, K , which are delivered from the spools below. The operation is very simple and rapid, and the machine cannot be too much admired, either for its labor saving qualities, or the cleanliness and perfection with which this operation is conducted.
This machine was patented April 4, 1854 For further particulars address the inventor Mr. Willis Humiston, Troy, N. Y.

Rezoll.

Mr. S. Piesse, in the Gardeners' Chronicle, says: It is well known that the patience and labors of the horticulturist are frequently rendered unavailable by the appetite of some insects. For preserving their flowers from these enemies, gardeners have adopted several plans, not one of which appears to be effective, more especially against the earwig, which is most to be feared as the flowers ap proach maturity. How many show dahlias are thus "cut off in their hloom !" With the hope that the following recipe will offer some check to these marauders, I send to you, assured that its cheapness and easy application will render it universally appreciated. Take of common rosin, 1 1-2 lbs. : sweet oil 1 lb .: place them in a pipkin over the fire until the rosin is melted, stir the materials together, that they may be well blended when cold the substance formed, which I call rezoil," will be of the consistency of molasses. To use the rezoil it should be spread with a brush upon shreds or any fitting maerial, and wrapt round the stem of the plant if any support is used, that should be brushed over also. No insect can possibly, or will attempt to cross this barrier; the rezoil never dries, but always remains sticky and clammy -its action as a trap is therefore obvious. To preserve grapes and ot her wall fruit we have only to nail a strip of list upon the wall round the entire plant, and then paint it well with the rezoil on both sides, if it can be managed, to keep insects from crawling under as well as over. Other modes of appli cation will suggest themselves without my here enumerating them. Birds, cats and mice equally avoid soiling themselves with this substance.

The two mammoth steamships which are alked of to form a new line for California, will probably be constructed by Messrs. Perrine, Stack \& Patterson, of Williamsburg. They are to be 450 feet long, with two pairs of paddle wheels.

The Roanoke, another of the new screw rigates, has just made a successful trial trip, and has been sent off on a cruise. Her speed 3600 pounds of coal per hour.

[Reported officially for the Scientific American.] LISTOFPATENT CLAIMS FOR THE WEEE ENDING JUNE 2, 1857. Door Locx-Thomas B. Avterbury, of Pittsburgh, Pa.
I claim, first, The use of the vibrating armiQ Q, arranged
and constructed as described, which, whilst it acta as a
 follower, 1), as a means on of disconnecting the spindit from
the toot when the door is ioked, and connecting them
when uniocked, as specified Second, 1 do on ot claiin the use of a dead latch operat.
ing directy on the locking bolt, to prevent it being
locked or unlocked by the rey, as that device is weil
known. Eun. claim the use of an ar mor lever, F, which, when
bressing upon the tumbler of the lock, prevents its be-
 locking or unnock
tially as explained
SLEEvE FAstener-Wm. A. Bates, of Boston, Mass,
I do not claim forming a sleeve fastener by means of
hinged spring arms, a slot and ears, as patented hinged spring arms, a a slot and ears, as patented by Far
\& thompson, assingees of Joonn Mansure, my invention
differing materiall advantages over the same.
Nor do flaim in buttons or fastenings for clôhes hav.
ing one end of the eye or tongue hinged, or rigidly tas ing one end of the eye or tongue hinged, or rigidy faas
tened to the button, and making the tongue or eye elaa
 to trichard Oliver, ©ct. 10, 1854. My invention differ
from this-the body in my clasp being made so as to
spring longitudinaly
Iclaim my improved bracelet clasp, made with a slot It caimm my improved bracelet clasp, made with a glot
ten tongue and cath hook, and with its body to spring
lenthwise, as doascribed. SkATEs-R. W. Belson, of Philadelphia, Pa. : I Ido
not claim separately forming the runner of two parts, tor
this has veen previously done I am also amare that the stock formed of a certain
numberop parts. and the runner of a slate, have been
cost
 barger shisate he object appears to be economy only, no
retiereuce being had to the formation of the gutter.
Neither do 1 claim casting the stock and runner in one
 [This skate is cast in two longitudinal equal parts,
which are afterwards fastened together by screws, and he runner is chilled, so that it is rendered very durable,
and not liable to wear. Thig improvement greatly re ducesthe cost of manufacturing skates.]

 oox or chest, C, and spring, h , the
as shown, for the purpose set forth.
[This hydrant is self-closing in its character; it has
ew parts, and these are arranged in a very simple man ner to effect the self-closing of the valve, wien no more
water is to be drawn, flow down, and prevent the hydrant from freezing in cold weather; the box, the tube, and its valve, can also
be easily disconnected from the top and lified up Sor re pairing when necessary-a very conveaient and use ful
arrangement. The hydrant is opened by pressure on a bottom; the waste water in tie tube then Hlows down through passages into a chamber below the reach of
 arroses, hooking into holes or eyes prepared for them
also that wire pins have been secured on orna men having biunt thds, sothat by pricking holest through an
article to which it is dosirable they shan be attacked articie to which it is desirable they shall be attache
the saidp pian may pass throưh, and be tantened theree
by bending the pins down-all such arrangements I d
not claim.

 described. When connected to and used in com bination
with the Ketchum mowing machine, in the manner and
for the purposes set forth.
 manner asd to communicate to the same a dorward an
backward motion, in connection with a rotating motion
substantiall as describe.
Second. I claim the arranzo wit Second, I claim the arranzement of a guide piece, for
the purposo of guiding the type roller inthe later port
of its torward motion, so as to bring the types alway of is tor ward motion, so as to bring the types alway
square aaninst the platen, T, containing the paper
card to be printed. Door Hivar-S. M. Bullard, of Holliston, Mass, :
do not claim the inclined planes, for they have bee
long known and used. long knownand used.
But claim the detached anti-friction roller inserted
between two inclined planes, in the manner and for the
purpose described. purpos
 the park of the machine separa taly.
But Ine liaim the combination of the beating cylinder
with the endes apron yiolding table, or surface under
the apron, substantially as explained.

 hereto with a sumaci
anelastic packing,
the purpose set forth.

 cylinders are connected, s.
for the purpose described.
I aliso claim the method described of forming the con
ne ction betwenthe thistons of a arios or cylinders and
single crank pin, by means of a disk.
 maining connecting rods of the series of cylinders are ap
plied. thus obviainn the direct aplication of all the
connecting rods in the series to the same cranls pin.

 I am aware that it is conmono in all wheols to bind or
hold the ends of the buckers by means of narrow rims
which coverthe ends of the buckets, and therelore I do

 Wheels are in general use
I also olisclaim any special form of the buckets
I also disclaim every fieature of the described invention Which is seen in any otber water wheel of this class,
Budt to the best of my belief no wheel has ever been
made of the class now shown in which a flanch, ce, was
 I claim the use of a tlanch, c, or its equivalent, in the
manner and tor the purposes substantialty as described. [This wheel receives its water at the center and dis-
charges it at the periphery. It has an extended flanch o which the top of the buckets are secured, and whic flanch forms a cover to the mouth of the flume. The
water is discharzed at the sides, and air is admitted at he top of the coover. The water escapes from it freely.
not being dragged around by the wheel, or offering re. istance to its movements, asin most other wheels.]
 and arrauged in relation to,
with, the needle, as set torth.
 substan
fied.
Por
 Plows-John S. Hall, of West Manchester, Pa.
claim vibrating the beam in a circular bearing in the ing slots, i, i, the whole combined and arranged substan
inlly as described, whereby the draf end of the beam
may be derticall adjusted, and the beamm so secured to may be vertically adjusted, and the beam so secured to
he land side as that it is impossible for the former to
lip.
 in connection with a spring and screw, ir respective or
peullarity of construction, and merely viewed as a
stretching block or tree, or such devices are now used
or such purposes.
I claimed the described new article of manufacture, con-
isting or the thin metallic shells, A and \mathbf{B}, hinsed at a sting or the thin metalic shells, A and B, hinsed at a
he former having anextension, to serve an a handle
ote implement, and fitting the eront inside of the eho
 by means of the screw, L. passing throush
and abuting againe the prijection, cof the
the manner and for the purpose specified.
[This block for stretching the leather of shoes is made
in twohalves-a front and a back shell section of the oot-which are united at the top by a screw, capableo
distending the block and stretching the leather smoo and accurately to the proper shape-a very convenient improvement.]

 upon the saw without altering the set of the gage, and
that the gase can be aduuved upon bite blade, witho
loosening the clamps which hold the gage to the saw. FAucer-Lucius J. Knowles, of Warren, Mass. :
laim combining with. or arranging with respect to the

Life Preservers_James Knight, of New York City
LuFE PREservers-James Knight, or New York City:
L claim the construction of the supporter, so sustain the
head in the poistion assumed by persons when swim-
ming thus relieving the wearer from muscular effort,
 mouth and nostrild from the vidonce of the waves, and
his supporter and shield fitted to the ordinary lifo pre. themsheaths, as represented, one of them fitted with a
theath to admit the stem of the supporter tor adjustment
to the wearer. The whole when combined constitutes Locomotive Boilers-J. E. Ms Connell, of Wolver
 which I have had occasion to describe or refer to as as.
many variationsmate made therefrom without deviat.
ing from the principles or main features of my inven-
What I consider to be novel and original, and there-
ore claim, in the fore-box incraased insize, so as to ex.
ond into the barrel of the boiler, and in connection end into the barrel of the boiler, and in connection
herewith the tubular stays conveying a supply of fresh ir into the extension described, whereby inh oproduct
of combustion are consumed in a more perfect manner

 C, arranged substantial. as ahown, and in such a rela-
tion to the saw that the bed or table may rotate around
the cutting edge of the saw as a center, for the purpose
set forth Serond, I claim the feeding whel, Q, arranged and
perated substantially as shown, when used in connec-
on with a rotating bed or table, , for the purpose Ion with a rotating bed or table, C , for the purpose spe
ified.
[Th is improvement embraces a rotating bed and feeding wheel, the latter being operated automatically and feeding the stuff properly to the saw, in whatever
position the work may be placed, as conducted by the perator. 'This feed motion is always regular in propor

 with upward prcjecting pins have been used, in connetinn win the bottom of the hopper, but incapable ond I amal also amarent. f the notched bars for graduating the
seed discharge
Ido not claim these devices
 Gibrating recessestes, as describat agita, in combination with the
when said parts operate tozether, as set forth.

 esting of h hemp, as described.
[In this hemp har vester there is an adjustable seat for
ine driver, also an adjustable reel. The seat is set to ive the driver the adost suitable position, and the reel
its proper line of action, according to its proper line of action, according to the hight of the
hemp. There is also a movable platform, for onabling he driver to discharge the cut hemp on the ground in gavels-no raking attachment being employed.]
ATMmospurnc CuwR Mg- Robert MMCUutheon, of
wanda, Pa. I do not claim using atmospheric air in

 nd the air pipe, M, when arranged in rimelation to each
other and to the bod the churn, in the manner and
or the purposes set torta.
Sowivg SEED Broadcasp-A. C. Miller, of Morgan-
own. Va.: I claim, in combination with the adjustable
 H, with their openings, m, the whole
manner and for the purpose set forth.
Paring Horses ${ }^{\text {P. Hoors_- }} \mathbf{C}$. N. Mitchell, of Concord,

 upright, B, having a recess, c. in its upper end, the whole
being arranged specifically as shown and described, for
the purpose set forth. This is a useful and
blacksmiths. The paring knife is fitted into a reciproca
ting irame ; it works in guides, by adjustable plates. The horse's hoof to b enuated by adjustable plates. The horse's hoof to be pared knife by a lever, paring the hoof rapidly, smoothly, acurately, and with ease.]

 ase parts ot the wheels are made and proportioned, all
as tor the purposes mentioned. Fluid Merer-James. R. Maxwell, of Cincinnati, O.:
claim the arrangement of the piston, with the partis
cmployed, for moving the valve, gall arrang arrangeas repnployed, for moving the valve, giall a a
esented, and for the purposes mentioned.
Churrs-Henry C. Nicholson, of Mount Washington,
O. I Im a mare tluter wheolshave been uned in churns,
but in such manner as to prevent the free agitation of the ream, viz, by causing them to rotate against a division
ooard, or by passing a hoop around thinir perin herien,
oither of which do not eftet the obect 1 have in view. Bo not claim either of these plans.
But Inilame the so arranging ofthe fitter wheels upon
ent arms as that the cream agitated by them shall not re-act against any dividing surface or be impeded by
any surrounding piece, and thusi allow the agitation to
beo more diret in a vertal line, and not follow the ro
tation of the shaft on which they are placod, as set forth and of the shaft on which they are placed, as set forth
Leather Shoe Binding-Eugene L. Morton, of
Charlestown, Mass.
scribed of maitaim the improved process de. skin or sheet of leather into strips of equal width, joining
them at theor endi, on as to ocnnect them into none long
trip, and coloring the same when so formed the whole trip, and coloring the same when so formed, the whole
being formed of or red ueced to an uniform thickness. and
年 ie Heghy or surp us
splitting, or otherwise.

 W. which is located and combined with, and at the
nouth of a swing inte, as described.
We claim in grain feeders, regulating the feed of the grain by the swaying of
stantially as described.
[The grain is fied into the stone in such a manner
that the eye of the stone is never clogged, and that the eye of the stone is never clogged, and
the feed is uniform. A gyrating tube is inserted into the ye of the runner, and it has a cup located near its up-
er part, or mouth. The cup is filied from the spout
or a hopper, and it gyrates with the tube, the grain overflowing and falling over its sides into the feed tube, and
down into the stones. The quantity of grain fed into the the hopper in the cup. The feed is altered by raising or te hopper in the cup. The feed is altered by raising or
lowering the spout of . e hopper in the cup. These are very simple and practical devices for feeding grain to
mill-stones]

 I claim, first, The arrangement of the several parta of
Yy machine. , hamber attached to and communicating
near its bottom with the vessel enclosing the wheel, inar its bottom with the vessel enclosing the whee
ind which hamber the hollow shaf of said wheol opens
and discharges, and which contain one outiel for the air accumulating in its upper part, subst
manner and for the purpose described.

 evaporation into which they dip, and the hoodor cove
which guide the vapor and gases that are introduced Whic h guide the vapor and gases that are introduce
throug the unimmersed portions of said disks, substan
tially in the manner and for the purpose described. Osonllating Printing Presses-Chas. Potier. Jr.,
 sp:ing, as that is common.
But I claim, first, The mapner of adjusting the impras.
sion by meannof of the levers, h, and scrust i, substantially as described.
Second I Iaim the use and adaptation of the lifting
feed board. 1 , for carrying the sheet the the grippers, Third, I also claim operating the "fly" by the cam, S ,
When so constructed as to cause said "fy." to conform When so constructed as to cause said ny io conforn
to the motionson the bed B, and oscillating eccentric seg
ment, D, as fully set forth.

SErD PLANTERs-S. G. Randall, of Dixon. III, : I
claim hinging the seed hopper with its drive wheel, G, and other appliances connected with it to the side pieces
af the harron the pivote arms D, to that whin said
hopher is thrown orward, it shall rest on and be ope. rated by said drive wheel, whicit runs on the groupd for
that turpopes. and when thrown bick, rest on said pieces,
and be out of action as set forth.

 [This improvement relates to the sickle of harvesters strain which comesupon the sickle bar, tending to bend it, when the crank is at its upper and lower points of roation. Thesickie bar is so guided by the devices dethe sickle cuts with greater ease, much friction being being twisted] Dir STock-J. F. Schaver, of New York City: Iam
aware that circular plates having dies or reeeses. of
graduated different sizes cut on the peripheries have

Portable Cross-cut SAming Machine-Stephen
Scotton, of Wayne county, Ind. I Io not claim attaching a asw or saw frame to the piston of a steam engine, or
the use of simple doz, to attach the machine to a tree. or
log, for the are bare bothembdied in a patent granted to S .
 the manner and for the purposesset torth.
Second, I claim alotted saw, K and screw bolt, h, for
the parposes indicated
Third, I claim block, R, in combination with dog, Q, the eparposes indicated.
fhird, I claim block, R , in combination with dog, Q,
for purposes set forth.
 the manner so as to remove the waste portion rrom the
strip of leather, while the heel piece is being formed
therefrom in manner as specified. Coosing Rangrs-Chas. J. Shepard, of Brooklyn,
N. Y, I do not claim a motallic conductor between the fire and oven, as the same has been used in the orm of a
separate block, on which the fire brick rested, but 1 am not aware that the side plate ot the oven has ever before
been tormed with the thickened part at the point of cur
Vature in said vature in said plate as specified, whereby the direct
heat of the fire (which would cause burning) is inter. cepted, and the wiole plate is heated by the conducted
hoat, which would not te the case if the patatand con-
ductor (2) were in separat pieces. and by tive means
he oven is enlarged and rendered more efficient. Ic claim forming the plate, m, that encloses the whole
side of the oven next the fire, itith the conductor and
radiator
 conducts the heat to and dizperses the same throughout
the side oven plate, m, heating the oven more unitormly
and preventing burning, at the same time that the oven Printergs Composing Sticks-Jas. and Wm. Tidge
well, of Middletown, Conn.: We do not claim making a Nor do we claim making it with a solid foot or bottom
stile without apertures for the insertion of the fastening screw.
But ela claim the application to the slide of a compos-
ing stick orthe flange, U., and the screw E , in combination with the washer, F, interposed bctween the point of
the screm, and the exterior surface of the foot or botom
stile of the stick. as described, and for the purposes set
forth.

 traverse rods, which operate the files when arranged to
ribrate parallelwith the plane of the sams.
just ant to ad I ciaim giving the soms a continuups rotary motion
while they are operated upon by ine bles means of a
beli applied directly upon the sam belt applied directly upon the saw cyinder.
Illaim a yielding or spring flie holder, in combination
with a traversing rod, having a reciprocating rolling
motion. Uniting the Panels of Portable Fences_Chas.
Van De Mank, of Oaks Corners, N. Y.: I claim the end ocking piece or board hh, combined with the locking
ooard, and rails of, ind kithe whole constructed and
 througn two holes.
Eut 1 clloimg securing the side rails in place when the

 ormed in the shaspe of horizontal terraces connected by
vertical columns or supporta.
 Plow CLavis-J. D. Willoughby, of Pleasant Hall,
Penn.: I claim the stem. B, and button, C, with the
 Prixong Pressrs-D. H. Windnor, of Cincinnati,
ond
 inintion with He hook, or or equivaient devices for the
ripping and inerrsion of in inking roller vetween tie
consecutive irhing as explalned. Door Bolv-Amos Wescott, of Syracuse, N. Y. It It,
do not claim any particular. method ol movigigdor boits,
But I claim the supporting and guiding of the rear or

 forth.
[This is an improvement on hand husking machines; attached to levers. There is a bevelled lip attached to in cutting, they also force the husks from the ears.].

stionta

form.

 Glue in Bones.
Bone contains from 30 to 36 fer cent oif earthy matter, chiefly phosphate of lime, and the remainder is gelatine. When bones are diges ied in muriat:c acid, they become transparent and flexible l:ke leather, the earthy ma'ter is dissoived, and after the acid is all carefully washed away, pieces of g'ue of the same shape as the bones remain, which are soluble in hot waier, and a
purposes of ordinary glue.

Expanslon of Cast Iron in Solldifying.
Mbsbrs. Editors-Allow a subscriber and constant reader to correct an erroneous state ment made in the last number of your valu able scientific journal (page 301) in regard to the expansion and coatraction of cast iron Your Michiserrespondents, Messrs. Beckwish "practical" men very of ien do) made a mis"pracical" men very of ien do) made a mis-
take. It is unalierajly true, as stated in your paper of May 16, (page 285,) that "cast iron expands in becoming solid, and theeefore takes
the impression of the mold with exactness," provided the mold be perfectly unyielding. I is further true that "cast iron shrinks ajout one-eighth of an inch to the foot" cfter it has become solid, and hence the patierns must alWays be made in that proportion larger than
the desired size. But it is not true, as added y Mr. Seward, that this shrinkage occurs to the metal "in becoming solid."
The fact is, that gereral as the law is that heat expands bodies," the law is just as general that immeciistely a ter the melting point is reached a further heat will contract all bodies. At least, I am aware of no exception to the statement that liquids in being cooled down invariably expand for some time before being congealed, after which they again contract. Hence it is famiiiar to every founder that melted iron is heavier (that is, denser, than solid iron, and that a pig of iron thrown nto the freshly filled ladle will float on the top of the incandescent liquid, instead of going
to the bottom, as it should if the melted metal were the more expanded. The same is true of lead, copper, silver, gold, \&e.; and the same is true of ice, which, as known to every degrees warmer in which :t floats. Water like inon, "expands in becoming solid," and oulky anvils have been split by a few drops freezing within a small cavity, in atiestation of this law of neture.
D.
[Dr. Lardner in his "Treatise on Heat , says:- Most of the metals undergo a sudden solid state, but to this there are three exceptions namely, cast iron, bismuth, and antimony. A metal which contracts in passing foom the liqu:d to the solid state cannot be made to take the shape of a mold, owing to its sudden contraction causing it in the solid form to be of less magnitude than the mold which it filled while liquid. It is for this reason that money composed of silver, gola, or
copper cannot be cast, but must be stamped. Cast iron on the contrary, as it dilates, takes the impression of a mold with great exact-
Dr. Lardner evidently teaches the doctrine that cast iron, ant:mony, and bismuth expand and stay expanded in cooling from a liquid tate. His opinions on this point are somewhat different from those of our correspondent, whose ideas are clearly as follows :-Molten iron when poured into molds expands as its temperature decreases, until it congeals-becomss a solid-when it contracts; every one knows how much. Evidenily, there is no Jifference between his views and those of Messrs. Beckwith and Seward, whom he intends to correct on the main point of the question. Their understanding of it is simply that castings of iron are of less magnitude than the iron in a molteu state. They evidently did not intend to convey any other idea.
If, according to our correspondent, molten iron expands in cooling, then it should burst molds to pieces. He instances the prodigious power of water, in becoming ice and eplititing anvils; surely, if the molten metal expands in cooling, he should be able to instance cases of ine explosion of molds by the expansion of the metal, however small that expansion may be. On the other hand, if iron contracts in the mcld, how are we to account for the exactilude of iron castings? Yis views on the contraction of the metal after it is con-
gealed-all parts then shrinking equally-will gealed-all parts then shrinking equally-will accourt for this. If the metal shrunk in the
mold before it was congealed, it certainly would not take an exact impression.
I_{t} is our opinion that the cause of the ficat ing of solid metal upon the top of molten metal is not that the latter is of greater spe--
cific gravity, according to our correspondent's views, but a repulsive action between the two. This can be demonstrated by dropping a piece of lead into molten tin; the lead, which is of far greater spec:fic gravity, will actually float upon the in
Ic is necessary to make patterns in some degree larger than the intended iron castings, to allow for their contraction in cooling, which equals from about the ninty-filith to the ninetyeighth part of their length, or nearly one per cent. This allowance is very easily and correctly managed by the employment of a contraction rule which is made like a surveyor's od, but one-eighth of an inch longer in every foot than ordinary standard measures. When a wood pattern is made, from which an iron one is to.be cast-the latter being intended as a permanent foundry pattera, as there are two shrinkages to allow for-a double contraction rule is employed, or one the length of which is one-quarter of an inch in excess in very foot.

Compasses on Irou ships.

The Liverpool (Eng.) Compass Committee, ormed by the late Dr. Scoresby and others, for the purpose of inquiring into the cause of and, if possible, providing a remedy for, the extraordinary variations of the compass on board iron ships, has been disbanded. The Liverpool Courier says:-
"Its decease could not have occurred at a more inopportune time than the present, when naval disasters through 'errors of the compass' are so rife. We need only instance the cases of the new iron clipper ships City of Madras and Charlemagne, lost within the past few days in the Clyde, and worth, with their cargoes, upwards of $£ 200,000$; of the iron screw steamer Arcadia, reported ashore steamer Amelia, ashore near Milford; of the late total wreck of the iron screw steamer Si. Andrew, on the coast of Syria; and of the complete loss, last week, on the Elackwater Bank, of the Irish coast, of the wooder clipper ship Emperor, a few hours after leaving this port for the Brazils. Surely these in stances ought to suffice to show the imperat:ve necessity that still exists for discovering a remedy for these destructive 'errors of the соmpacs.' "
This is a subject of great importance. both as it pelates to ecience and commerce. If the compass is unreliable on iron ships, on account of the local attraction of the magnet, then such vessels never can be unswervingly irusted, at least with such a guide as a magnet to direct them in their course over oceans and seas.
Notes on sclence and Forelsn Inventions.
Steel Tubes.-Messrs. J. J. Russel and J. B. Howell, England, have secured a patent for making tubes from sheets or strips of cast steel, previously rolled to the thickness desired. To make lap.jointed tubes they take a strip of cast steel of the required dimens:ons, and scarf the edges to form the joint then they bend it into the shape of a tube, with the edges overlapping each other, as in making lap-welded iron tubes. The skelp thus prepared is put into a furnace, and heated to a welding temperature, then taken out, and passed between rollers over a mandrel, so as to weld the lap edges together, thus forming a cast steel tube, which is afterwards finished by being drawn through dies, to reduce it to the proper size. It is not easy to see in what respect this differs from that employed in making iron tubes.
Water prooing Paper, Cloth and Leather.-P. Pierre Hoffman, of Strasbourg, has taken out a patent in England for a new varnish, which when applied to the articles named in the above caption, render them, it is stated, air and water-proof, while at the same time they keep dry under all variations of temperature in the open air, are elastic, and do not become sticky-the latter being a fauit commor to a number of varnishes. The articles are coated with a mixture either of siccative linseed oil and sulphur, called balm of sulphur, or of a misture of sulphur with a quantity of sicca tive oil, gum copal, gum opal, yellow amber,
resin, india rubber, and gutta percha and
with the essences of turpentine or naphtha, \&c., the se two latter keeping in solution the above named substances, which may be mixed eparately or at the same time with the balm of sulphur.
The chief features of the invention consist in the use of the balm of sulphur for rendering fabrics air and water-proof, and in preparing the balm in the following manner:-When the siccative or common drying oil has boiled for about two hours, in order to thicken it and servarate its mucilaginous parts it is left a few days to settle, previous to decantation; then ten parts, by weight, are taken and submitted to slow boiling, during which small quantities of flowers of sulphura:e added, and agitation is kept up the whole time. When from one to iwo parts of flowers of sulphur have been thus thrown in small quantities into the oily misture; a transformation soon takes place, and the balm of sulphur now assumes a homogeneous mass of a brownish color, cohesive and elastic, somewhat like india rubber. The constituents of this composition or coating are then the following (by weight) :-Ten parts of siccative thickened linseed oil, and from one to two parts of sulphur in powder. The balm of sulphur, thus prepared, is used as the coating, and liquified either by the action of heat, or hy means of solvents, such as spirits of turpentine, naphtba, \&c. When it is desired to obtain a harder coating, gallipot gum. yellow amber and resin, \&c., may be added.
The fabric to be coated is dipped into the material when hot, and in the liquid state, from which it is withdrawn and made to pass between six scrapers adjusted transversely above the vessel, so that any excess of the material is remored, and drops into the vessel again.

Sulvhurized Oil Paint.-At a recent meeting of the Society of British Architects, J. B. Daines stated that by subjecting 8 parts (by weight) of linseed oil and 1 part of sulphur to a temperature of 278°, in an iron vessel, he obtained a species of paint possessing singusurfaceservative properties. Applied to the lly of a building with a brush it effectu any: keens out air and moisture, prevents depos:ss of soot and di: $:$, , and preserves the
jeauty of the stone, wood or brickwork to which it is applied.
It has long been known that a portion of sulphur can be dissolved in oil, but until recently such a composition, as a paint or varnish, has attracted no notice, in fact, its preservative and impervious qualities when dry were unknown. It is well known to chemists that sulphur (the substance employed to give body to the oil) is unalterable in the air, and is not acted upon by moisture, hence its quality as a preservative for coating the outside of structures exposed to the weather. It is capable of preserving plaster of Paris figures exposed to the air, also monuments, and buildings of the brown free-stone, which are liable to detrition from the action of the weather. It is stated that it improves the color of the stone to which it is applied, as well as preserves it, therefore it is a most useiul paint, and deserves to be very generally employed.
Engineers and Firemen.-In a communication to the Paris Academy of Sciences, Dr. Duchesne states that engineers and firemen on ocomotives improve in health and grow stou during the first two years of their employmont, but afier this period a dangerous change takes place in their health. Among the earliest uniavorable symptoms are a weakening of sight, loss of hearing, and rheumatic pains, chiefly on the right, side. These are followed by pain, and a diffculy of stand:ng while the locomotive is in motion. We have never heard of American railroad engineers being affected in this manner.
Salt in Dyeing.-F. A. Gatty, of Accrington, Eng., has taken out a patent for the use of common salt (chloride of sodium) in dyeing with garancine, alizarine, and oîher preparations of madder. Ore pouad of the salt is employed to every iwenty-five pounds of he garancine in the boiler or a vat. Tre àt, it is stated, produces more beactioul and permanent colors. Some of our country dyers
employ salt in coloring woolen goods black.

