fildo 3 Inbentions.

Reaping Machine Challenge.
Baron Ward has given notice to the Imperial Agricultural Society of Vienna that he challenges all Reaping Machines-European and American-to compete with his, (an im provement on Hussey's, patented in October last in Austria,) for ore thousand florins, in cutting seven acres, next harvest. The trial is to take place in the Austrian dominions and those who accept the challenge have the choice of cutting either wheat, barley, oats or clover, the prize to be awarded to the one which does the work in the shortest time, and in the best manner. This challenge has been published in the London Times. The agents of American reaping machines in Europe, we suppose, will take care of it.

Eleotric Illumination.

A few weeks since, some experiment on electric illumination were made at Paris, sur passing all that had before been done. The success was due to an electric regulator invented by MM. Lacassagne and Thiers, called by them an electro-metric repeater. The in ventors placed four of their lamps on the Arc de Triomphe de l'Etoile, and projected the light at night on the Champs Elysees, toward the Place de la Concorde, and a second on the avenues of Nenilly or de l'Imperatrice the change having been made because of the numerous gas lights of the Champs Elysees. These gas lights were made to look dull and smoky, yet diminished the effect of the electri light; but in the avenues of 'Imperatrice the lights presented intense brilliancy.
Each lamp was sustained by means of sixty of Bunsen's pairs, and furnished with a sphe rical reflector of metal, or of glass silvered by a battery.

Nautical Telegraph
In place of the common light used as a beacon and for signals aboard ships, Mr. Treve, of Paris, proposes to substitute a simpler system more easy of execution. It is based on the use of illuminating gas light by a galvanic current of induction. The lamp at the mast head receives the gas through a tube of vulcanized caoutchouc having a spiral of copper wire within, and covered exteriorly by some impermeable material ; it terminates on the deck where the gas ometer is placed. By stop-cocks, the gas can be let in at will A Rühmkorff's apparatus is used forinflaming the gas; two wires covered with gutta percha pass to the upper lamp. These wires branch off and are attached to the shank of each of the other lamps; and are so arranged as to give a spark at the beak of each burner As the light will take place only at the beaks supplied with gas, the lights may be varied for signals by means of stop-cocks, any or al of the lamps being lighted or extinguished a will.- [M Jerome Nickles, Paris Corresponden of Silliman's Journal.

Street Sweepinx Machines.

A company in this oity undertook to clean the streets by contract, and intended to employ street sweeping machines for this pur pose. Some machines were set to work, but owing to a dispute, as we have been in formed, between the makers of the machine and the street contractors, they have cease d to be used. We have no doubt but in a few years from the present date all our large cities will employ machines exclusively for street cleaning. One machine has recently been employed in Philadelphia, and has given sat isfaction-doing more work than twent men. It is nearly ten years since we urged upon the authorities of all our cities to adop machines for street cleaning, to sweep an repair the streets during night hours, and to lay down the Belgian pavement. These sev eral municipal improvements are gradually coming into general use, but not quite fast enough to please us.

Rille Percussion Shell.
Oapt. Norton, of England, has invented an explosive shell for common rifies, whicb can be used with safety, and is highly spoken of by our foreign cotemporaries. At some fature period we will give a full description of it.

HELLER'S QUADRUPLE WATER WHEEL.

This illustration is a perspective view rep- each through a gate, D. F is the main cenresenting four overshot wheels so combined tral shaft resting upon a step, G. There are and arranged as to transmit their united four posts or supports, H, which have arms, I power to one vertical shaft. In a close square I, supporting the central shaft. J is a bevel flume or box of requisite size are secured the wheel on shaft, F, gearing with bevel wheels, four wheels, E . The water is admitted to K , on the horizontal axles, L , of the four

water wheels. The outer ends of these axles and combination of wheels on December 16, un in journals in the sides of the box; at 1856, to John Heller, and called a "Quadruple the center they are supported on a frame- Water Power." The object of the invention work. The water is discharged from the is stated in the specification to be "to avoid bottom of the box, or the tail-race, as shown the friction caused by the pressure against the by the lower arrows. The combination of one side of the shaft, which tends to deflect these wheels, as represented in the fgure, with it from a perpendicular line in the operation part of the box removed, renders the whole of a single wheel."
arangement clear to every person. More information may be obtained by letter A patent was issued for this arrangement addressed to Mr. Heller, Binkley's Bridge, Pa.

GUIDES FOR CIRCULAR AND OTHER SAWS.

On the 8th of July last a patent was granted \mid application of three pair of guide spring pegs. Orrin Rice, of Oincinnati, 0 . for the im. The nature of the invention consists in the provementin guiding circular and other saws, mode of applying a spring peg, or any numillustrated by the accompanying engravings. The first, fig. 1 , is a perspective view of a spring guide peg; the second, (ig. 2,) an under side riew of a table and circular saw, showing the
single, double, or in pairs, to circular or other aws, in sawing timber of any kind.
A represents a hollow tube, closed at the back end to confine a spring, B, to be operated by the thumb screw, C, for strengthening or weakening the spring pressure, according to circumstances. The front ends open to admit wooden peg, A^{\prime}, into which screw pins E F are inserted through slots, as shown in fig. 1 , to prevent the peg from being pressed by the spring and thumb screw beyond a fixed limit, to keep the saw in line. $G G$ is an arch or bridge constructed according to the size of aw, for placing one, or any number of springs wilh pegs or bolts of an anti-heating character, near the circumference of the same, as epresented in the figure.
The common circular saws employed in sawing logs are made of very thick plate steel, to prevent buckling and springing; they herefore cut a wide kerf, and waste the timher. The application of these guide spring pegs, as shown, supporting and strengthening a thin saw, prevent the waste of from onehird to one-half the kerf of a thick saw, thus effecting a great saving in sawing valuble kinds of timber.
There is also another objection to using arge circularsaws for sawing logs into square timber or boards. The saw presents so large surface to the log that the least spring side wise in the \log while the saw is running through knots, knarls, or crooks, is liable to spring and buckle it, unless it can move side wise, so as to accommodate itself either way to the spring of the log. This improvement obviates this difficulty by placing the spring peg, as shown, on each side of the saw, exactly opposite each other, leaving the mandrel unconfined by shoulders, so as to give lateral or endwise motion; the saw is held steady, and at the same time permitted to move easily either way, more or less, accord. ing to the spring of the log.
The saw is also brought easily back in line by the pressure of the peg on the side furthest from the line, and lightly on the other side isectly below where the saw first strikes the log. It will be understood that these guide pegs or bolts are placed on the underside of the table, the upper half of the saw being, as usual, free and unconfined to operate on the og. This improvement appears to be an ex cellent one in every respect.
More information may be obtained by lette addressed to Mr. Rice, as above.

Perpetual Motion.

The original perpetual motion man-the bona fide inventor-E. P. Willis, of New Haven, Ct., has arrived in this city, and put up four of his remarkable machines in the American Museum, where they are now on exhibition as puzzlers to the curious, cute and cunning in such matters. One of the machines is similar in its construction to the one illustrated on page 201 of our last volume. The three otherz are different. One is a magic clock; the o ber an electric wheel and the fourth four revolving brass balls on a glass pedestal. They move apparently as if they possessed the power of motion in themselves. We are no believers in perpetual motion. for such a thing is impossible; but for rare, skillful specimens of mechanism, Mr. Willis has shown him himself to be an original genius, and his machines are well worthy of examination on this account.

The Maynooth Matiery

An inquiry having been made as to the cbaracter of the above named galvanic bat tery mentioned in our last number, we wil describe it for the benefit of all those who may wish to construct the cheapest battery yet brought out. It is the invention of Professsor Callan:-
Taking advantage of the remarkable passirity of cast-iron, in relation to a mixture of strong nitric and sulphuric acids, he constructed his apparatus with cast-iron cells, in which a porous porcelain cell, with a zin plate is inserted. The latter contains dilute sulphuric acid; the former a mixture of th two acids just mentioned. This is a power ful galvanic apparatus.

