
 Firenens-J. B. Read, of Tuscaloosa, Ala. I I I laim
the providing the upper part of the powder space or
chambeit of firearms, with angular or wedge shaped the providing the upper part of the powder space or
cramber of irearms, with angular or wedge shaped
projectionsto be forced into the rear of the projectile in
the act of loading, as described. Also the form of ball represented in my drawings
cylindrical at or near its midde portion, with alight
oxcavation or receess on the inder and under side of he the oxcavation or recesss on the inner and under side of the
cylindrical part, both ends of the ball to be conoidal or
conical.

 [By this improvement a more free and easy movement ofthe action is obtained in repeating, and the ham-
mer can be stopped near the string. An effect is obtainod likethat produced in the complicated "ErardGrand Action," by vory simple devices.]

 I claim the new manufacture of rollers or cylindorsfor printing fobrics described. ©hat to soant the interior of a tube of copper or alloy of copper.
C corinks PoundER Sardis Thomson, of West Otis,
Mass. I claim the ebll shaped chlinder.
with combination

increased or diminished as desired, by the "slidingback. ' In stirring the grating the devices employod proven any dust from gotting into the apartment-a
most usefu arrangement for such stoves, the remedy most usefu arrangement for su
great nuisance in their use.]
 c c. the levers. E Fe
conntructed arranged a
disk, N , as set forth.

 forth.

SToves- Jacob Steffe, James Horton,
(assignors to J. H. Chinn Currie,
Mechanics' Hand Books.-The Weight of Coal
Messrs. Editors-Those who prepare books of reference for mechanics and civil engineers should be careful in their figures and accurate in their statements, or they become but blind leaders of those they profess to guide. The error of a single fipure in a text book in common use may involve vast interests, and cause the loss of thousands of dollars. I am a civi engineer by profession, and have occasionally been led into serious errors by the inaccu-
racy of works esteemed good authority; and I wish now to point out one glaring error which I have discovered, in the hope that it may lead to a general overhauling of the books. Having had occasion recently to cal culate the weight of a cubic yard of coal, or the number of tuns which a vein of a given thickness will yield per acre, I referred to work called the "Engineers' and Mechanics" Pocket Book," by Charles H. Haswell, and published by Harper t Brothers. On page 225 of the eighth edition, the weights of many different bituminous coals are given, the heavi est of which (the Cumberland coal) is stated to be fifty-four pounds per cubic foot, omitting fractions. Now the weight of a cubic foot of water is one thousand ounces, or sixty-two
and a-half pounds. Does Mr. Haswell mean to intimate that coal is lighter than water The statement professes to be taken from the report of Prof. W. R. Johnson, made in 1844 I cannot believe that Prof. J., who made his report from actual experiments for the United States Government, ever put forth such a statement; and it is not a mere misprint, for the weight of many other bituminous coals
are given as still lower, so that the error would seem to be with the author. It may e.eem but a small matter, but in this case it involved very heavy interests.
You will say, perhaps, that an engineer should be able to verify the correctness of the figures in his text books. This may be so; but if we must in all instances ascertain by observation and experiment the correctness of the authorities who profess to guide us, then books of reference are useless, unless we mak
them ourselves.
D. S. Green.

Ralston, Pa., May, 1857.

[We have given place to the above letter for several reasons. Our correspondent has recently calculated the weight per cubic yard of coal, and his calculations involved heavy in terests. He condemns the assumed weight per cubic foot of coal, as given in Mr. Haswell's book, therefore his calculations must have been based on a different unit of weight per cubic foot. But if Haswell's book is wrong, Prof. Johnson was wrong, for assuredly Haswell is perfectly correct in his authority. On pages 590,591 , and 592 of Professor
Johnson's report alluded to, the weight per cubic foot of a great variety of coals is given, and they are all lighter than water. The
heaviest is Beaver Meadow, Pa., $56 \cdot 19$ pounds per cubic foot. Has our correspondent then, made a wrong calculation? Not likely. But he judges Haswell's book as referring to coal in the mine, whereas it quotes Johnson as re-
ferring to broken coal, the kind employed for steam boilers. In Johnson's report it is stated (page 62) that the calculated solid foot of coal in the mine is 92 lbs ., in the condition of Johns 53 pounds. It was an error in Prof coal broken in lumps, because it is liable to lead to mistakes, and is unavoidably inexact, lead to mistakes, and is unavoidably inexact,
as there is a difference of several pounds in
the weight of a cubic foot of small and large lump coal-the small weighs most.
Our correspondent is perfectly correct in his allusions to incorrect hand books for engineers and mechanics. Unless they are posiively reliable they are worse than useless, as they go forth the propagators of error. A wrong statement in one number of a periodical can be corrected in a subsequent issue; but it is far otherwise with a book, a second edition of which may never be published, or only at a very extended period of time from the first.
ne Hundred Tuns of Grass to the Acre
Messrs. Editors-The statement you published, taken from an English paper, respecting the raising of one hundred tuns of grass on a single acre of land pertaining to Lord Derby's estate, is undoubtedly correct, or very nearly so. I had the pleasure of visiting his Lordship's estate last summer, while on a tour of agricultural observation in England, and I am prepared to believe the statement. My visit was made about the first of June, and they had already secured two heavy crops of grass, and it is not improbable that four or five more were cut during the long and favorable senon of last year. Four or five crops of the heavy, stout,Italian rye grass is not unusual ; and Mr. Mechi, of the celebrated Triptree Farm, informed me that he had once grown seven during the summer. This grass grows with great rapidity in England when stimulated by the rich liquid nutriment so liberally and continuously applied.
Our farmers have yet much to learn respecting the scientific cultivation of the soil. They have yet to learn how bountiful mother earth may be when properly dressed and cared for by the husbandman. It should be observed that the climate of England is much more favorable for the growth of the grasses than our own, owing to its excessive humidity; but stiil, I do not know why several successive crops may not be produced here by the use culture. Jas. R. Nichols.
Haverhill, Mass, May, 1857.

A Neiv Science.- Hydroscopy.

Joseph Gautherot, a mining engineer in France, distinguished by a peculiar talent of observation united with an extraordinary perseverence in investigations of geological trata, has discovered a law of nature which enables him, by examining the features of the
surface to direct where subterranean sources surface to direct where subterranean sources
of water are to be found. Thus he pointed out the places of digging wells to such an extent that he was honorably rewarded in 1846 by the Freach Government for his beneficial services to different communities. In the district of Haute Maine a well was thus dug, yielding 12,000 litres of water per hour. The French Government has recently appointed him for Algiers, where at different cities wells are now dug out with the best result; and he is considered among the Christians, Mohammedans, and Jews as a econd Moses in the desert.
L. R. Breisach.

Simple Butter Cooler.
Melted butter is all very well in its right place, but when butter is put upon the tea or breakfast table, having the appearance of being just out of the oven, it is anything but reditable to the housekeeper, and far from atisfactory to those who eat it. Dry toast is ositively spoilt if spread with soft butter; indeed, if butter cannot be brought to table at
least firm, if not hard, it is better to keep it away altogether. Fortunately, however, it is not necessary to proceed to such desperate measures, as butter can be kept nice and cool in the hottest weather, and that in a very simple manner. Procure a large, new flowerpot of a sufficient size to cover the butterplate, and also a saucer large enough for the flower-pot to rest in upside down; place a rivet or meat-stand (such as is sent to the oven when a joint is baked) in the saucer, and put on this trivet the plate of butter; now fill the saucer with water, and turn the edge will be below the water. The hole in edge will be below the water. The hole in
the flower-pot must be fitted with a cork; the
air-tight chamber. Let the whole of the outside of the flower-pot be then thoroughly drenched with water and place it in as cool a spot as you can. If this be done over night, the butter will be as "firm as a rock" at breakfast time; or, if placed there in the morning, the butter will be quite hard for use at tea hour. The reason of this is, that when water evaporates, it produces cold; the porous pot draws up the water which in warm weather quickly evaporates from the sides, and thus cools it, and as no warm air can now get at the butter it becomes firm and cool in the hottest day.

Notes on Science and Foreign Inventions.

New Electro-Magnetic Engine.-A scientific commission has been appointed by the Emperor of the French to test a new electromagnetic engine, recently brought to Paris by T. Allan, of Edinburgh. This engine has been at work for some time at the engineering establishment of M. Cail, Paris, and with such success that it has inspired much confidence in its economy. It is to be applied to a locomotive at the expense of the French Government, in order to give it a most thorough test. Such at least, are the reports made public respecting it. If Mr. Allan renders an electro-magnetic engine successful, and as economical as a steam engine, he will do something which has been considered an impossibility. Such engines have already been constructed as locomotives both by Davidson in Scotland, and Professor Page in our country, but they were far from being as economical as the steam horse.
Copying Inks for Printing.-It has always been held to be a desirable object for some purposes to obtain an ink partly soluble in its character for printing, which can be transferred or copied in the same manner as written letters. For such an ink a patenthas lately been obtained by J. Underwood and F. V. Burt, of London. The patentees, in making a black ink, take of nutgalls 14 lbs.; of sulphate of iron 6 lbs ., of soap 3 lbs ., of gum senegal 12 lbs ., of thick molasses 6 lbs ,, of lamp black 6 lbs., of Prussian blue 3 lbs.,
and of filtered rain water 15 gallons. The and of filtered rain water 15 gallons. The about three hours, more or less, in h alf the above named quantity , f water, and the clear liquid drawn off. The gum and sulphate of iron are separately dissolved in the remaining quantity of water, and the whole is then mixed with the decoction of nutgalls, and exposed for about twenty-one days, more or less, when the supernatant liquid is drawn off from the deposited matters and sediment. The molasses and soap are now added to the liquid thus drawn off, and the whole evaporated in a water bath to nearly the consistency of ordinary printing ink, and then the lamp black and Prussian blue are mixed with it. The above ingredients will form a black ink; but ink of other colors may be made by using soluble coloring material or materials, such as sulphate of indigo, or carmine dissolved in ammonia, either separately or combined with coloring matter such as now employed in the manufacture of colored printing inks, in lieu of the nutgalls, sulphate of iron. lamp black and Prussian blue used in making ink as described.
Purifying Petroleum.-A few weeks since we referred to the purifying of this natural hydrocarbon fluid, which is obtained in many parts of our country in great abundance from wells, and we stated that an invention which would render it fit forburning in lamps would be very valuable. We perceive by the London Engineer that a patent has been taken out for this purpose by S . White, of Liverpool. The process is not fully described, but it is stated he uses common salt, neutral chromate of potash, sulphuric acid, copperas, and carbonate of soda, in combination, as purifying agents. He distills the petroleum three or four times according to circumstances, and has all the stills going on from the first to the last in one continuous process, from the crude to the finishing operation.

The Directors of the Mint have arranged with the Adams Express Company for the ranspor tation of the new cent coins to al

