
leum is obtained from numerous wells on th banks of the Irawaddy river, and is used by the inhabitants to burn in lamps. The city of Genoa, in Italy, is illuminated by gas made from the petroleum of a spring in the vicinity. Such springs are often found in places far removed from coal regions, and we are of opinion that they are sometimes found on higher and sometimes in lower situations than coal beds. The petroleum wells of New York are far removed from coal formations, and yet it appears to us that our correspondent may be correct in his surmises respecting the origin of such wells. The source of these wells may be in coal beds in the mountains at a considerable distance. The heat leum out of the coal beds, and naturally enough it will seek a lower level to escape. The artesian wells of Paris are supplied with water from a lake about two hundred miles distant in a mountainous region, and the "tar springs" of California, as well as the petromanner have their source in distant coa formations.
If the offensive odor could be removed from thepetroleum obta:ned from native wells, we believe, that a valuable and profitable business might be carried on in manufactur
ing burning fluid from it, not only in Califor nia, but every other place where such well exist.

## Mechanics' Halls.

Messrs. Editors-As anytbing pertaining to the welfare of mechanics, whether as individuals or as a class, either in moral or phy sical progress, is of interest to the readers of the Scientific American, allow me to present an instance of the power and effective energy to which they can devote themselves, when rightly directed, as combined in associations or their moral and intellectual improvement The instance I will refer to, is that of an association existing in Worcester, Mass. which, two years ago, numbered less than fire hundred members, but containing men of noble parts. Feeling that the moral and intellectual demands of such an association were commensurate with the undertaking after mature and deliberate consultation, they came to the conclusion that some kind of edifice should be erected for the use of the association, so as to contain halls for exhibition, reading and library rooms, \&c., for the use of members and apprentices belonging to it. One of the whole-souled fathers of the in stitution whose head and hands had long been devoted to mechanics and improvementswho from a blacksmith's apprentice has risen o an honored position-generously started the " ball" with a subscription roll of $\$ 10,000$ and it soon increased to more than twice that sum, thus producing a fund upon which to make a beginning. Bonds were then issued, and were soon taken up almost entirely within the association. A building was afterwards commenced, which from the furnishing of the plans to the finsshing of its beautiful ornaments, were all executed by its own members, each in his own department, vieing the best to advertise his skill with the permanency of its adamantine walls. This structure now rears its noble form from the center of the city, far above all surrounding buildings-the first to attract the at ention of the stranger-the pride of the city and county-and it stands dedicated to the arts and sciences, and to moral and in ellectual improvement.
It was erected within two short years by a mall association, then numbering less than five hundred members; it now numbers seven hundred, and is in a fair way to pay interest, besides laping up a surplus as a sinking fund with which to pay the bonds when they become due. The edifice presents an elaborately ornamented Corinthian front of 100 feet, rising from pave to apex, 86 feet, running back 145 feet in length. On the ground, besides a spacious entrance hall, there are four stores; on the first floor, a lecture room, 50 $\times 80$ feet, library room, reading room, cabinet room, and some four or five office rooms. Over these is the grand exhibition hall, extending the length of the building by 80 feet wide, with a ceiling over 40 feet from the
floor. The cost of the edifice, including the
ground, was about $\$ 115,000$. This sum, ground, was about $\$ 115,000$. This sum,
large as it may seem, is but the result of well directed energy, backed by a firm purpose. May this not serve as a stimulant in many circles where true energy is now latent?

## Worcester, Mass., April, 1857.

A. C.


Messrs. Editors-As many engineers are giving their experience in the management of team boilers, I will give mine. I have never een troubled with priming, although frequently using muddy water. I always keep the water high, the fire even, and the steam at one point, as near as possible. Muddy water will certainly cause boilers to prime, and opening a safety valve suddenly, will also make a boiler to prime when the water is high. Steamers entering rivers from the sea are more addicted to priming than if river or sea water had alone been used in the boilers, probably from the boiling point of salt water being higher tban that of fresh, thereby the salt water acts like so much molten metal in raising the fresh water into steam. Filling a furnace full of light fuel, and closing the doors quick will cause the boilers to prime. My plan of keeping boilers clean where muddy water is used, is by blowing off from the bottom,immediately after the fire is started, or two or three times before steam is raised; when steam is up, and I wish to blow off, (if the water is muddy,) I shut off the feed water five or ten minutes. By following up this practice, boilers can be kept free of mud easily, thereby preventing safety valves becoming cemented with dirt. All water sbould be filtered before it goes into a boiler. There is not the attention paid to this subject that its importance requires.
J. M. Hartnett.

Waukegan, Ill., April, 1857

From the numerous brief and clear letters which we have published on the above subject, reliable data have bean obtained regard ing the general velocity at which millstones are run, but the following letter seems to be complete on several points of milling, such as speed of stones, the amount of work they accomplish, and the horse power required to drive them :-
Messrs. Editors-I notice by the Scienipic American that you wish information especting the best velocity to run 41-2 foot millstones. The Suffolk county mills in Boston have six runs of 41.2 feet stones, which make two hundred revolutions per minute; they have done complete work when grinding from eighteen to twenty bushels of wheat per hour. This mill has run successfully for the last eight years. The Pioneer Mills, Alexandria, Va., has twelve runs of 41-2 feet stones that make two hundred revolutions per minute, and do most perfect work when grinding eighteen or twenty bushels per hour. The balancing of the running stones, and the arrangement of machinery must be very perfect to work with satisfaction at this rate. I would recommend from 150 to 200 revolutions, according to the amount of work to be done and power employed. The result will be in the ratio of one bushel ground per for each horse power employed.

## Alexandria, Va., April, 1857.

Speed of Millstones,
A correspondent in Richmond, Ind., who has had great experience in milling and millwrighting, informs us that in running four feet millstones he proportions their velocity to the power he has to drive them. If his power is only sufficient to grind 10 or 12 bushels per hour he runs the burr stones 180 revolutions per minute; and if his power is sufficient to grind 20 bushel ${ }^{\text {s }}$ per hour, he runs them from 200 to 220 revolutions per minute.

How to use the Divining Rod.
Messrs. Editors-I will give you some use.

The stick I use is the $t$ wig of a sweet apple ree-it must be natural, not grafted-or whalebone, both of wbich must be crotched It must be held in the hands firmly, with the
elbows resting on the hips, the palms of the
hands turned up; the thumbs turned to the right and left, and held tight on the end of the stick. I think it will operate better when a person is in health, than when not. It will operate only over running water. Only a few persons can use it. It will not operate in averybody's hands, but why, I cannot tell. If any one disbelieves this, send him to me, and I think I can convince them that I am corect in my assertions. ELIAs BABPI.
Saccarappa, Me., April, 1857.
[From the number of communications which we have received on the "divining rod," we cannot question the honest belief of a number of our readers in its virtues. There are many phenomena in nature which are yet sealed up to us, and the divining rod may be one of these; still, we must say that we are skegtics in the powers or virtues which are attributed to it. We believe that any man of a reflecting and observing mind can guess where water may be obtained by boring, without a divining rod, as well as another person with one. Our opinion may be wrong, but we can. not come to any other conclusion by reasoning on the subject from scientific data. If, however, we are at any period of time after this convinced by ocular demonstration that there is scientific virtue in the divining rod, we will frankly make the change of ourviews known.

## County Patent Rights.

Messrs. Editors-I have lately purchased a county right and machine of the patentee; now I wish to know if I have a legal right to solicit orders from other counties for the article manufactured. If you will give the desired information through your paper, or otherwise, you will much oblige,

Peoria, Ill., April, 1857.
Rufus Portsa.
[We have frequently answered questions ike the above through our correspondents column, and now publish this letter, so that our answer may be considered general "to all whom it may concern." Mr. Porter has no legal right to sell his machines out of his own county. A county patent right is the exclusive power to "make, sell, and use" in that county. He may take an order from another county, but he must not sell there; and the person whom he supplies cannot use the machine without the consent of the licencee of his own county

## Aloys of Aluminu

MM. C. and A. Tissier, says Comptes Rendus (Paris), have communicated a short note on this subject which is of importance at the pre sent time when the interest in aluminum which had somewhat fallen off i beginning to revive. The authors find that the valuable properties of aluminum are injured by the presence even of small quantities of other metals. One-twentieth of iron or copper make it almost impossible to work the alloy, while one-tenth of copper renders aluminum as brittle as glass. An alloy of 5 parts of silver with 100 of aluminum works like silver but is harder and takes a finer polish. The one-thousandth of bismuth renders aluminum so brittle that it cracks under the hammer even after being repeatedly annealed. The presence of aluminum in other metals often communicates valuable properties when the quantity is not too large. Thus one-twentieth part of aluminum gives copper a beautiful gold color and hardness enough to scratch the standard alloy of gold employed for coins without at the same time injuring the malleability of the copper. One-tenth of aluminum gives with copper a pale gold colored alloy of great hardness and malleability, and capabe of taking a polish like that of steel. Five parts of aluminum with 100 parts of pure siler give an alloy almost as hard as silver coin containing one-tenth of copper, and thus permits us to harden silver without introduc. ing a poisonous metal.

## Draining the Everglades.

It is stated by some of our cotemporaries that the water so long lying stagnant in that mmense tract of country known as the Ever glades of Florida, bas recently found an outlet hrough which it is discharging itself into the Gulf of Mexico. This will leave many millions of acres of dry land capable of cultivaion, and well adapted to the growth of the sugar cane.

