THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS

VOLUME XII.

NEW-YORK, MAY 2, 1857
NUMBER 34.

Scientific American,

 pUBLISERD WEEELYAt 123 F lton street, N. Y. (Sue Buflding.) BY MUNN \& C
o. D. MUNN, S. H. WALES, A. f. BMACH. Responithe Agents may also be found in all the prin-
cipal citios and tows in the United States. Sampson Low, Son \& Co, the American Booksellers
${ }^{47}$ Lugdate Eiill . London, Eng., are the E ngish Agents
to receive subscriptions for the Scientific Amorican. Single copies of the paper are on sale at the office of
Bubifaction and at al the periodical stores in this city,
Broklyn, and Jersey City. Brooklyn, and Jersey City
TERMS- $\$ 2$ a.year, $-\$ 1$ in advance and the re-
mainder in six months.
 Improved Marine Governor
It was a comparatively simple matter to conceive the propulsion of vessels by the power of a steam engine. The steam engine having been previously invented and put in practice for turning mill-work, it only remained to attach paddles to a shaft thus impelled and extending across the vessel, and the solution of the problem, the great solution which has done so much for human progress was at once in its crudest form achieved.
But Fulton was a skillful mechanic, and like his countrymen of later days, labored to adapt the heated monster, the breathing, living mass of metal, to its new situation on shipboard. Much has been done, and undoubtedly much yet remains to be accomplished before the steam engine, especially in those forms intended to impel vessels on the stormy ocean can, be pronounced absolutely perfect; and one of the greatest and most obvious wants in such situations at the present moment is a good and efficient governor.
The steam engine itself is an importation; but many of the best adaptations of engines and boilers to marine purposes have been the fruit of American brains and of American exparience. That the problem of regulation is capable of solation is proved by the success of Silver's governor-a purely American de-vice-now in use on the Collins' steamer Atlantic, and we believe, on several other large ships, with the effect of checking the engines with perfect certainty and very rapidly whenever they incline to "race," or to turn too rapidly. When, in a rough sea, the wheels are left nearly or entirely out of water, if only for a second, the engines, if uncehcked, generate a very high velocity in the ponderous masses termed "racing," and when, under such circumstances, one wheel only is plunged suddenly under and stopped, the other acts like a fly-wheel, and aided by the still laboring engines at the cranks, is extremely liable to twist off the shaft. With all the care that is taken to control the throtthe by hand in bad weather, the failure of a shaft or some other important portion of a marine engine, due to this cause alone, is by no means uncommon. The disabling of the Atlantic a few years ago, causing her to be almost given up for lost, is still fresh in the minds of our readers. The more recent failure of the Tennessee, causing a serious delay in the communication with the disturbed regions in Central America; the accident to the British steamer America, the French steamer Vigo, and many others which might be adduced, both American and foreign, can, like that of the Atlantic, be traced almost directly to the " racing" of the engines ; and any device which proposes to obviate this difficulty without retarding the engines in the least at other times, is deserving of the very highest degree of attention. The device under notice promises this, and, as would appear from theory, with a degree of perfection as admirable as beautiful. It is not, in any case, bulky or noisy, requires little, or almost no attention, to keep it in perfect order, and in

o case offers any sensible resistance, except |taching a small cylinder at the side of the when the speed of the engineexceeds a certain steam pipe, and supporting therein a piston to speed, for which the regulator may be set.
For example, if, as is common on most of our
be acted on by the steam, which piston is so
connected to a spring and to the lever of the For example, if, as is common on most of our large ocean steamers, the enginesshould make from twelve to sixteen revolutions per minute, the regulator properly adjusted is of no effect, until the engine starts forward at a speed equal to twenty or more revolutions in that time, when immediately, and before they can complete a half revolution, the admission of the steam is shut off almost tightly, and the engines, thus strangled, are fain very rapidly to moderate their behavior, and assume again such speed as etiquette requires.
This simple governor is the invention of Marshall Wheeler, of Honesdale, Pa., and was patented June 11, 1856. Its action is based on the diminution of pressure which unavoidably takes place in the steam pipe, whenever, by an extra speed of the engine, the steam is drawn from it faster than usual. It is wel known that in every possible case the pres sure at the extremity of a steam pipe neares the engine is less than in the boiler, or, of course, the steam would not move through it ; but if properly proportioned, the difference in pressure is very slight, not more tran one fourth of a pound per square inch, at full or dinary speeds, and still less when working slowly. But if, by any chance, the engine are allowed to work faster than usual, drink ing at each revolution the full volume of steam, as before, the pressure is still more reduced, and the steam rushes through with still greater violence. The motion of the steam has no influence directly in affecting the movement of this mechanism, but th diminution of pressure is in such cases so considerable as to be very sensible.
The invention consists substantially in at-
connected to a spring and to the lever of the
throttle valve that so long as the pressure is up to a certain standard, or beyond it, the spring will be compressed, and the throttle valve held open, but whenever the engine "races," and lowers the pressure, the tension of the spring shuts the throttle
In the drawings, fig. 1 is a side elevation and fig. 2 a section through both the steam pipe, A, and the side cylinder, C. The elevation is represented as supported on stands. The ordinary throttle valve is denoted by R , the additional or automatic throttle valve by S , and a side throttle, which allows the fluid to pass around-extremely important in starting or working very moderately-is denoted by T, in the corresponding pipe, B.
D is the piston referred to, working freely in the cylinder, C. The piston rod, \mathbf{E}, is supported and guided by the frame, I, and carries on its top a cross-head, F, from each end of which depend rods, G, which connect it to the extremities of short levers, provided for the purpose on the shaft of the throttle valve, S. The coiled spring, H, tends to hold the piston, D , continually down, which would keep the valve, S , nearly shut, but the pressure of the steam on the under side of D tends, to raise it, and hold the valve, S, wide open. Starting the engine by opening the side valve T , the pressure in the pipe raises the piston, D , and after closing T , holds it continuously open, allowing the steam to pass freely and supply the engine, until, on attempting to "race," or go faster than prescribed, the pressure lowers, and the valve, S, nearly shuts. The engines then incline to drag too slowly until the flow of steam through the small re-
maining opening at S fills up the pipe again to nearly its original tension, when D again rises, and all moves on as before. To avoid this too slow motion of the engines after each action of the governor, it may be well to leave the side throttle, T, part way open, or provide for a quite liberal flow through S when as fully closed as it may be, either of which would probably have the effect desired. To aid in this matter the cross-piece, J, is made adjustable on the frame I, so as to check and stop the descent of D, and conse-
quently the closing of S, point at any limit quently th

preferred

The invention has not yet been put in use, but seems in the highest degree promising, and one which should be applied by a skillful designer on some of our ocean steamers, and fairly tested.
Any further information desired may be obtained by addressing Mr. W., as above.

One Hundred Tuns of Grass to the Acre. Three weeks ago, on page 249, a statement was published taken from an English paper, of a farmer on Lord Derby's estate who had raised 100 tuns of grass on an acre of land by liquid manuring. We gave the statement in such a manner that any person might understand it was not upon our own authority. We have, however, received three or four letters expressing great surprise at it being published in our columns. It was stated, in the article referred to, that the crop raised was "Italian grass;" it was not hay, but green crop, and probably four or five cuttings were made during the year, as three cuttings of clover are not uncommon in England.
That 100 tuns of grass should be raised on an acre of land appears to be rather a tough or large story to credit ; but if 76 tuns of turnips have been raised on an acre, why might not 100 tuns of grass be raised on the same area? In Johnston's Agricultural Chemistry, page 487 , it is there stated that this quantity of turnips had been raised on an acre of land. From farms which thriftless cultivators had to leave because they had "worn them out," and from which they could not raise three bushels of wheat to the acre, other farmers have come after them and raised thirty bushels of wheat to the acre. We have known of such cases ourselves having occurred in the State of New York. But tell the former class of farmers of such results, and they look perfectly incredulous.
Lord Derby's farmer may have raised 100 tuns of green crop to the acre, by liquid manuring, as has been stated, and he may not. The quantity appears to us to be too great to credit, but not deny, because it is no more fabulous like than the 76 tuns of turnips mentioned by Prof. Johnston.

The Half Launch Finished
The Queen of the Pacific, noticed last week as stuck when partially in the water, was finally set afloat during the night of Saturday the 11th ult., by jacking up the hull into a more inclined position, and reconstructing the ways. Thus repaired she slid off on the final trial without any assistance from tugs or derricks. The extra cost, in consequence of the mishap, is judged to have been about $\$ 4,000$.

The Boston papers state that in a field near that city five men have been digging for a week for hidden treasure, being led to believe they could find it there by a divining rod. Na treasure has yet been discovered.
M. Garvini lately made an ascent is Paris in the largest balloon ever constructed. It was propelled by a screw, and had a rudder like a ship, but was not very successful.

A submarine cable has been laid across the Misaissippi at St. Lonis.

[Lleported officially for the Scientific American]
LIST OFF PATENT CLAIMS lagued from the United States Patent Offce
 generating gas.
But 1 claim ine ever. B, with the compound rim, a
fitting into the groove, a, for the purposes set forth.

Door Spring-Gilbert LL. Bailey, of Portland, Me. : I
do not claim any of the described parts separately.
Neither dol Neither do 1 claim in a door paring malting the pres.
mure great est when the door is closed.
 Whole arranged and operating subs,
ner and for the purpose set forth.
 com ination with the racks into which they gear, opera-
ting substantially in the manner and for the purpose spe-
cified.

 a serie. of valves or vanes. dd.arranged constructed, and
operated subsiantially in the mannerset forth and for the
purpose specified. AWI. HArT-Nathan S. Clement. of Worcester. Mass. :
I claim an awl hatit constructed as set forth having the
chamber orspare awls fin the same end ing jaws, and when closed in the manner specifed.

 nation with the pring box for regulating the flow of gas,
these bith tonstucted and operating as and for the pur-
potes substantially as de scribed.
 spring.actuated block, a, with the grooved and per forated
siding slat, fubstan tally in the manner and for the
purphe set forth.
 for the purpose set forth.

[This hand seed planter has two hoppers, a seed ele-
vator with two slides, and a clearer fitted within a box which has three passages It can plant two different linds of seed at once, such as corn and pumpkins, \& C c... in
one hill, or seed and some fertilizer. The clearer also prevents cho:ing. It is a good improvement.]

 [This invention makes this indispensable portion
feminine wearing apparel adjustable in dimensions feminine wearing apparel adjustable in dimensions
suit the convenience of the wearer. The dress is supported to an extent controlled by the cord, so as to give
any amount of swell desired, while it retains all the lightness, coolness, and other desirable qualities belong ing to modern improved skirts.]

 the hat block
This is a use ul improvement in b.ocking felted ha
bodies. The combination and arrangement of the de-
vices described allow of the hat expeditiously, and blocked-put into pring puton very Luperior Kils-Aaron Jefries, of Alleghany co., Pa.:
Lo not claim the form of the stack above the arches in
the interior.
.

 as desc ribed and setfor th.

 pawl to the remainder ot the frime in order that the
roller and pawl may be turned towards the sheaves of the
pulley, as specified pulley, as specified
frame allaim conining with the pawl and the pulley
mechanism substantially as described, or its
 and the roller, in manner and to facilititet the morts, C C
of the shackle blocli on the chain, as specified.

 TEA KErrLEs, \& C-Jas. Greenhalgh. Sen., of Water-
ford. Mass. Ido not claim having a wire pass from the top, othe cover through the handle of the calinary vese
tel, so that by puling the wire the cover may be raied sel, bo that by pulling the wire the cover may be rai.ed
without turning the hand
Neither 1 I claim a sidung stop arranged on the bail,
and acting in combinatiow and acting in combination with a peculiar construction
of eyefor keeping the bail of a culinary vessel tlevated.
as in the patent of Thomas H. Dodge. 1853
 dle, , b, by means
in the bil han
poses specified.
[The cover or lid of this kettle is connected with the
handle or bail. By moving the bail to the one side, the handle or bail. By moving the bail to the one side, the
lid is lifted; by rais ing the bail to a vertical position the
lid is put on, and the handle held upright-a very convenient and safe arrangement for operating the lids of ketlles.]
 craim the mode described of attaching rakes to endless
belts or chaing and of properly
whiding the same
whereb lateral and vertical deflection of the band is

 ard stop. E, constructod and arranged to hoid the plun
ger statonary ntil the point. K. neters the earth to a
certain depph, substantially as described.

 vent its entering the room. Corron Cultrvaror-John M. Hall, of Warrenton,
Ga: I Claimethe combination with the wheel, Po fthe
adjuctable hoes, i. constructed, aranged and operating
in the manner and for the purpose set forth.
 plished by an arrangement of parts substantially such as
jet iorth.
 scribed. Second. I claim the construction and use of the valve,
D, made of an ordinary bevel winged valve, with the

 ator to force diwn. by the crank. the piston upont the
valve, D, and open it against pressure, zo described.
 Inhaling Mrdicinal Agents-Alonzo G. Hull, of
Inded for New York City: I claim the meang of inhaling gases,
vapors, and medicines treated in the manner substantial
ly as set forth, or in any other equivalent manner. VAULT Covers-George R. Jackson, of R ve, N. Y. Y.
clain combining glasesof an inverted pyamdalor poiy-
gonal form with the sach or metallic portion of an illu
 ir producing a wider and more perd
light whith may pats through said cover into the apart
ment beneath, substantially as set forth.
 cesses in the ce lings of subterranean apariments with
ventilitan lamp posts. or with the fues of a bilding
substantially in the manner and for the purpose set forth
 described, and when nised in connection with th the
ing plate, G, operated in the manner specified.

 Bathing Apparatus-Louis H. Lefebvre, of New
Orleans, La: Iclaim, fir t, providing a portable frame
 atraching to said portable frame a graduating stop cock
pravided with a reservoir. a: to receive the condensed
rapore
 Second, perforating the pipe or reservorir from which
the vaporissuaintint the bath on it upper side. and plac.
 escape asset forth.
nelhird. distributing pipe. B, provided with double fun-
nels and stop cocks, for the introduction of medicated or other subs.tances into the bath through the connecting
oipe, S . substanially as set forth. CUrlisg Harr-Mark M. Lewis, of Albany. N. F.: I
claim the construction of a hair curling instrument by the combination of a taper-formed tube with a comb.
which can, by a spring or equivalent apparatus, be made to project from the surface of the tube. or withdrawn in
to the interior, substantially as set forth and described.

 consider that my improvement is is more perfect in these
respect than other stoves.
 TThe draftof this stove can be accurately regulated a
all times Ly a register, and rapidor slow combustion pro daced, as desired. It has two dampers for throwing the heated current in different directions, either to concen-
trate the heat on one side of the chambers, (which is of ren required,) or to diff use it equally all around.]

 an the orpmosite siden ot ar the ang angle
of the miter head, as set forth.

 ted to a dental forcep in such a mannst that one beak
can readily take the place of another, and therefore Id

 one with the other, for the purpose of securing a door o
hatchh, and or the purpose of preventing a sudden and
dangeroustart of the door in opening. by means of th
gradual movement of the battens outward, as the loop is angerous start of the door in opening. by meane
gradual movement of the battens outward, at the
turned off from them, substantially as described. Molds ron CAsping-Mortimer Nelson, of New York
City I claim the described method of forming molds
 Crisding SAws-Albert S. Nippes, of Lower Merion,
 shown, so that said roller may be elevatad or raised ap
freenfom the saw, and also be ajouted more or lese an.
gularly whithe the tace of the grindstone, H, for the pur-
pose set forth

[The saw is placed in a peculiar sash in this machine, where it can be turned over. perfectly strained, and
ground accurately to any thickness or bevel. There is also a compensating adjustment for adapting saws to be
ground accurately, according to the wear of the stone. ground accurately, according to the wear of the stone.
Means are also provided for giving the stone a lateral movement from one side of the saw to the other. It is a very ingenious machine for the purpose.]

Sporesshaves-Manley Packard, of North Bridge.
water. Mass. Ido a clampscrew to each start, in order to keep it in place
inthe stock
But I claim the described new arrangement of the
 with, substantially as described.
SA winc Machine-H. F. Purmort. of Saginaw City.
Mich: : I am aware that ine blocks of saw mills have

[This improvement relates to the feed motion of saw mills, and the adjusting of the head and tail blocks
in feeding the los to the saw. By a single lever the ced in feeding the log to the saw. By a single lever the feed
carriage is made to receive a direct feed motion and a carriage is made-gigged back. The arrangement of the
reverse motion-
devicesis very simple for effecting the objects specified.]
 the rollers and apron,
But we claim the combination of the vibrating stop
piece and lits rod, p. with the screwing plate, 9 and the

 rack, substantially as specified. car, as degcr ibed, con.
Second . We claim the mine
tructed withoutany oheningsin its sides, end or bortor
 rocking track, for tha porposes and in the manner sub
rantian
stity as specifed

 tially a specified.
usthly , in claim the arrangement of the cam stud,
in comation with the latch bar, K, by which the

 [By this improvement bolling cloths are easily fitted, det: ched, and they can be stretched with a hed and less degree of tension as may be required. And if on without removing any of the others, thus embracing con siderable economy. The improvementis applicable to
both silk and wire bolts.] BLACrsmiph's Burreris-Robert Killmer and J. W
Williams (assignor to Hobert Eillmer), of Nowton, Pa.

 claim the combiliation and arrangement or the plow.
he gird or grate the revolving ooth liftir wheel or
wheels, and the means of discharging the potat hes from
 he connections, P P, and concomitant parts for adjust
ng the side cutters,' $\mathbf{R} \cdot \mathrm{R}, \mathrm{C}$ to dress staves of different
wid widths, and at the same time preserving the propurtion
betwesn the bilge and the width of the slave as set
 BRIGE MAChiNES-G.J. Washburn and E. M. Fellow
(assignors tothemselvesand.
Cass.

 to uperate in relation to each other.
manner and for the purpose set torth.
 arim apppying an air regulator or ser es ot valves to the
orifices for admitting ait into the inner tube of an argand
burner. Nor do I claim separately therefrom, supporti,g the
Nobe and chimney brackeststy by abe encompasing the
burner or outside tube thereof:

leum is obtained from numerous wells on the banks of the Irawaddy river, and is used by the inhabitants to burn in lamps. The city of Genoa, in Italy, is illuminated by ga made from the petroleum of a spring in the vicinity. Such springs are often found in places f ar removed from coal regions, and we are of opinion that they are sometimes found on higher and sometimes in lower situations than coal beds. The petroleum wells of New York are far removed from coal formations, and yet it appears to us that our correspon dent may be correct in his surmises respecting the origin of such wells. The source of these wells may be in coal beds in the mounand pressure may distil and force the petro leum out of the coal beds, and naturally enough it will seek a lower level to escape The artesian wells of Paris are supplied with water from a lake about two hundred miles distant in a mountainous region, and the "tar springs" of California, as well as the petromanner have their source in distant coa formations.
If the offensive odor could be removed from the petroleum obta:ned from native wells, from the petroleum obtained from native wells,
we believe, that a valuable and profitable business might be carried on in manufactur ing burning fluid from it, not only in Califor nia, but every other place where such wells exist.

Mechanics' Halls.

Messrs. Editors-As anytbing pertaining to the welfare of mechanics, whether as individuals or as a class, either in moral or phy sical progress, is of interest to the readers of the Scientific American, allow me to present an instance of the power and effective energy to which they can devote themselves, when rightly directed, as combined in association for their moral and intellectual improvement.
The instance I will refer to, is that of an association existing in Worcester, Mass. which, t wo years ago, numbered less than fire hundred members, but containing men of noble parts. Feeling that the moral and intellectual demands of such an association were commensurate with the undertaking after mature and deliberate consultation, they came to the conclusion that some kind of edifice should be erected for the use of the association, so as to contain halls for exhibition, reading and library rooms, \&cc., for the use of members and apprentices belonging to it. One of the whole-souled fathers of the institution whose head and hands had long been devoted to mechanics and improvementswho from a blacksmith's apprentice has risen to an honored position-generously started the " ball" with a subscription roll of $\$ 10,000$ and it soon increased to more than twice that sum, thus producing a fund upon which to make a beginning. Bonds were then issued, and were soon taken up almost entirely within the association. A building was afterwards commenced, which from the furnishing of the plans to the finishing of its beautiful ornaments, were all executed by its own members, each in his own department, vieing the best to advertise his skill with the permanency of its adamantine walls. This structure now rears its noble form from the center of the city, far above all surrounding buildings-the first to attract the attention of the stranger-the pride of the city and county-and it stands dedicated to the arts and sciences, and to moral and intellectual improvement.
It was erected within two short years by a small association, then numbering less than five hundred members; it now numbers seven hundred, and is in a fair way to pay interest, besides laying up a surplus as a sinking fund with which to pay the bonds when they become due. The edifice presents an elaborately ornamented Corinthian front of 100 feet, rising from pave to apex, 86 feet, running back 145 feet in length. On the ground, besides a spacious entrance hall, there are four stores; on the first floor, a lecture room, 50 $\times 80$ feet, library room, reading room, cabinet room, and some four or five office rooms. Over these is the grand exhibition hall, extending the length of the building by 80 feet wide, with a ceiling over 40 feet from the
floor. The cost of the edifice, including the
ground, was about $\$ 115,000$. This sum, ground, was about $\$ 115,000$. This sum,
large as it may seem, is but the result of well directed energy, backed by a firm purpose. May this not serve as a stimulant in many ircles where true energy is now latent?
Worcester, Mass., A pril, 1857. A. C.

Managlng Eoilers.

Messrs. Editors-As many engineers are giving their experience in the management of steam boilers, I will give mine. I have never been troubled with priming, although frequently using muddy water. I always keep the water high, the fire even, and the steam at one point, as near as possible. Muddy water will certainly cause boilers to prime, and opening a safety valve suddenly, will also make a boiler to prime when the water is high. Steamers entering rivers from the sea are more addicted to priming than if river or sea water had alone been used in the boilers, probably from the boiling point of salt water being higher tban that of fresh, thereby the salt water acts like so much molten metal in raising the fresh water into steam. Filling a furnace full of light fuel, and closing the doors quick will cause the boilers to prime. My plan of keeping boilers clean where muddy water is used, is by blowing off from the bottom, immediately after the fire is started, or two or three times before steam is raised; when steam is up, and I wish to blow off, (if the water is muddy,) I shut off the feed water five or ten minutes. By following up this practice, boilers can be kept free of mud easily, thereby preventing safet 3 valves becoming cemented with dirt. All water sbould be filtered before it goes into a boiler. There is not the attention paid to this subject that its importance requires.

Waukegan, III, April, 1857.

M. Hartnett.

From the numerous brief and clear letters which we have published on the above subject, reliable data have bean obtained regard ing the general velocity at which millstones are run, but the following letter seems to be complete on several points of milling, such as speed of stones, the amount of work they accomplish, and tbe horse power required to drive them :-
Messrs. Editors-I notice by the Scientipic American that you wish information especting the best velocity to run 4-2 foot millstones. The Suffolk county mills in Boston have six runs of 41.2 feet stones, which make two hundred revolutions per minute; they have done complete work when grinding from eighteen to twenty bushels of wheat per hour. This mill has run successfully for the last eight years. The Pioneer Mills, Alexandria, Va., has twelve runs of 1-2 feet stones that make two hundred revoutions per minute, and do most perfect work when grinding eighteen or twenty bushels per hour. The balancing of the running stones, and the arrangement of machinery must be very perfect to work with satisfaction at this rate. I would recommend from 150 to 200 revolutions, according to the amount of work to be done and power employed. The result will be in the ratio of one bushel ground per hour for each horse power employed.
J. R. Howell.

Alexandria, Va., April, 1857.

Speed of Millstones.
A correspondent in Richmond, Ind., who has had great experience in milling and millwrighting, informs us that in running four feet millstones he proportions their velocity to the power he has to drive them. If his power is only sufficient to grind 10 or 12 bushels per hour he runs the burr stones 180 revolutions per minute; and if his power is sufficient to grind 20 bushel $_{5}$ per hour, he runs them from 200 to 220 revolutions per minute.

How to use the Divining Rod.
Messrs. Editors-I will give you some facts

The stick I use is the twig of a sweet apple tree-it must be natural, not grafted-or whalebone, both of wbich must be crotched It must be held in the hands firmly, with the elbows resting on the hips, the palms of th
hands turned up; the thumbs turned to the hands turned up; the thumbs turned to the
right and left, and held tight on the end of the right and left, and held tight on the end of the
stick. I think it will operate better when a person is in health, than when not. It will operate only over running water. Only a few persons can use it. It will not operate in averybody's hands, but why, I cannot tell. If any one disbelieves this, send him to me, and I think I can convince them that I am corect in my assertions, Eus Baser
Saccarappa, Me., April, 1857.
[From the number of communications which we have received on the "divining rod," we cannot question the honest belief of a number of our readers in its virtues. There are many phenomena in nature which are yet sealed up to us, and the divining rod may be one of these; still, we must say that we are skeg tics in the powers or virtues which are attributed to it. We believe that any man of a reflecting and observing mind can guess where water may be obtained by boring, without a divining rod, as well as another person with one. Our opinion may be wrong, but we cannot come to any other conclusion by reasoning on the subject from scientific data. If, however, we are at any period of time after this convinced by ocular demonstration that there is scientific virtue in the divining rod, we will frankly make the change of ourviews known.

County Patent Rights.

Messrs. Editors-I have lately purchased a county right and machine of the patentee; now I wish to know if I have a legal right to solicit orders from other counties for the article manufactured. If you will give the desired information through your paper, or otherwise, you will much oblige,

Peoria, III., April, 1857.
Rufus Portsa.
[We have frequently answered questions like the above through our correspondents column, and now publish this letter, so that our answer may be considered general " to all whom it may concern." Mr. Porter has no legal right to sell his machines out of his own county. A county patent right is the exclusive power to "make, sell, and use" in that county. He may take an order from another county, but he must not sell there; and the person whom he supplies cannot use the machine without the consent of the licencee of his own county. \rightarrow of Aluminu
MM. C. and A. Tissier, says Comptes Rendu (Paris), have communicated a short note on this subject which is of importance at the present time when the interest in aluminum which had somewhat fallen off i beginning to revive. The authors find that the valuable properties of aluminum are injured by the presence even of small quantities of other metals. One-twentieth of iron or copper make it almost impossible to work the alloy, while one-tenth of copper renders aluminum as brittle as glass. An alloy of 5 parts of silver with 100 of aluminum works like silver but is harder and takes a finer polish. The one-thousandth of bismuth renders aluminum so brittle that it cracks under the hammer even after being repeatedly annealed. The presence of aluminum in other metals often communicates valuable properties wben the quantity is not too large. Thus one-twentieth part of aluminum gives copper a beautiful gold color and hardness enough to scratch the standard alloy of gold employed for coins, without at the same time injuring the malleability of the copper. One-tenth of aluminum gives with copper a pale gold colored alloy f great hardness and malleability, and capabe of taking a polish like that of steel. Five parts of aluminum with 100 parts of pure silver give an alloy almost as hard as silver coin containing one-tenth of copper, and thus permits us to harden silver without introduc. ing a poisonous metal.

Draining the Everglades.

It is stated by some of our cotemporaries that the water so long lying stagnant in that immense tract of country known as the Everglades of Florida, bas recently found an outlet through which it is discharging itself into the Gulf of Mexico. This will leave many millions of acres of dry land capable of cultivaion, and well adapted to the growth of the sugar cane.

