Strinutific Ameritan.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS
NUMBER 33.

Scientific American poblished wemely
At 123 Fulton street, N. Y. (Sun Buildings.) hY MUNN \& CO.
o. d. munn, s. h. wales, a. e. bhach.

Responyible A Aents may also be found in all the prin.
cipal citios and towns in the United States.

 Brooklyn, and Jersey Cit
THiMS-\$2 asyar, -41 in advance and the re.
mainder in six months.

Morley's Patent Railroad Track Chair Above are engravings of a new rail joint chair, of more than ordinary merit, for which letters patent were granted to James H. Morley, of St. Louis, Mo., on the 2nd of December, 1856.

Figure 1 is an end elevation. Figure 2 is a perspective view from below, and figure 3 a longitudinal section on the line $S S$, in figure 1. The chair has been proved to be extraordinarily effectual in holding the ends of the rails perfectly stiff, so as to make the strength and elasticity of the track as perfectly continuous as possible, and although its expense, (some 70 or 80 cents per chair) is considerably greater than any of the common cast iron, or even than the most approved continuous lip rought iron chairs, it is far less than the elaborate fish joints employed on some heavily worked roads.
A A are the rails to be joined. H H shows a chair in place, composed of two parts, one on each side the raii. D D are bolts passing through each part closely underneath the rails, drawing the two parts of the chair together by means of the nuts, R, causing the parts of each, which we may term the lower and upper jaws, B B and C C, to grip firmly the flange of the rail on its top and bottom the chair not touching the edge of the rails at F F. The upper face of the lower jaw, B, is slightly convex in its longitudinal section as shown in figure 3, and the lower face of the upper jaw is correspondingly concave, giving to the joints a tendency to rise slightly as the two parts of the chair are drawn together by bolts, D , and also preventing a too rigid gripe of the guides on the rail. The upper jaw touches the rails only at the ends of the chair, and the lower jaw touches them only in its center, on the ends of the rails, as shown in figure 3, so that the elasticity of the rai] thus eases the jaws from their gripe, when the load is near the center of the rails, and allows the rails to move longitudinally in the chair at that moment, as changes of temperature may require. The rails are notched near the ends in the usual manner, and lugs or stop not represented are cast in the chair on the inside to fit the notches to prevent the rai from working out of the chairs; E E are notches where the chair is spiked to the cross tie or wooden sleeper of the track as usual.
The bolts, D D, being below the jaws, ac as a fulcrum in a manner to cause the jaws to bite the rail the harder while the load is on the joint.
The form given in the drawings is of a cast iron chair that has been in actual use on several miles of road during the past nine months, the exterior may hy suitable machi nery be made of wrought iron, if preferred.
The chair has been successfully used to some extent by placing the joints between the cross ties, so as to leave the chair altogethe knsupported and free to spring like othe parts of the rails. The external form ma be changed with economy whenthus used.
Experience and the opinions of some of the most prominent practical railroad men, lead to the belief that this makes one of the best joint fastenings in use. It effectually

MORLEY'S PATENT RAILROAD TRACK CHAIR.

braces the joint so as to prevent its sething advantages, together with its cheapness and
under the weight of the heaviest engive, and the ease with which it can be adapted to old this, too, on an unbailested road bed The battering of the ends of the rails, wbich takes place with most chairs now in use, is effectually prevented by this one, as it renders any considerable working or sinking of the ends f one rail below its fellow impossible. These

Various devices for feeding oil into the team chests and working cylinders of steam engines to lubricate the valves and piston by the aid of two cocks, hand pumps, etc., have been adopted at various times, and many steps oward perfection have gradually been atined.
The accompanying cut illustrates an excel nt device for the purpose, invented by Mr . ohn Henwood, of this city, heing an improvement on his lubricator patented March 10, of he present year. It works with a single cock, and injects the oil very certainly and seedily by simply turning the said cock one ourth of a revolution. It is only applicable ongines in which a tolerable pressure of team is employed, as it might be liable to ail under pressures of only from three to ten pounds above the atmosphere, as are employd in some English engines.
A is a small cup or funnel, in which the oil s poured. a is a smooth tube connecting A to B , which latter is a hollow piston. b are oles in the top of B , and D is an annular valve of thin metal. Tue oil poured into A, descends into B, and lifting D, rises into the ylinder, C. The cock represented in the tem below this cylinder, is the only one employed, and the construction might be still urther simplifed by dispensing with one of the two passages E , but we will proceed to escribe it as now constructed. The passages E, lead from the top of C. and the passage, F from the bottom. By turning the cock quar er round, the holes, $e e$ and f, coincide with and continue the passages, E E F, so that the pressure of the steam is immediately relt on both sides of the piston, B , but as the tube, A, is of considerable area, and of course prevents the piston from feeling any other than the atmospheric pressure on that part, the pressure on the under side is so much greater than on the upper, that it rises and drives the oil through the passages, E E, into the steam chest or other part to be lubricated.
The piston, B, is now nearly at the top of the ease with which it can be adapted to old tracks of whatever pattern of rail, recom mends it to the attention of railroad compaies.
Further information may be obtained by addressing the patentee as above, or Samue Small, Esq., Boston, Mass.
filled with oil, and the whole cavity below with steam at full pressure. But by turning the cock back to the piston represented in our engraving, the hole, G, therein (which communicates with the hole, F , as shown by a

Fig. the cylinder, C , the slight space above it being $\begin{aligned} & \text { from the lower portion of } \mathrm{C}, \text { through a side } \\ & \text { opening, and both sides of } \mathrm{B} \text { being now sub- }\end{aligned}$
ject only to the ordinary atmospheric pressure, it descends by gravity to its first position ready for a repetition of the operation; or in case the friction should chance to prevent its spontaneous descent it can readily be forced down by a slight pressure with the spout of the oiler when it is next used. We consider the apparatus a cheap and very convenient means of Jubricating in every case where the entrance of the oil is resisted by any fluid at considerable pressure.
For further information address the inventor, in care of Messrs. Mollers, Shotwell \& Docher, sugar refiners, corner of Vestry and Washington streets, this city.

Turkish Cemeut.

The Turks use common red earthenware pipes with socket-joints, to convey water from springs to reservoirs and fountains. They make and use mortars and cements as fol-lows:-
Mortar.-Fresh slacked hydraulic lime, one part, by measure; pounded brick or tile, finely sifted, one part, by measure; chopped tow sufficient to mix into the consistency of ordinary hair mortar. The ingredients are mixed dry immediately be'ore use, and then well incorporated by the aid of water; the mortar is used fresh.

Cement.-Fresh slacked hydraulic lime, one part, by measure ; pounded brick or tile. finely ifted, half part, by measure; chopped tow as above. The whole is mixed with oil, in place of water. The earthenware pipe-joints are made water-tight with this cement.

Hard Cement.

The following cement has been used with great success in covering terraces, lining basins, soldering stones, \&c., and cverywhere resists the filtration of water. It is so hard that it scratches iron. It is formed of 93 parts of well-burnt brick, and 7 parts of lith arge, made plastic with limseed oil. The brick and litharge are pulverized; the latter must always be reduced to a very fine powder; they are mixed together, and enough of linseed oil added. It is then applied in the manner of plaster, the body that is to be covred being always previously wetted with a sponge. This precaution is indispensable otherwise the oil would filter through the body, and prevent the mastic from acquiring the desired degree of hardness. When it is extended over a large surface it sometimes happens to have flaws in it, which must be filled up with a fresh quantity of the cement. In three or four days it becomes firm.

Dra wing a Magic Circle.
Reuchlin, an Austrian sage, was once de tined in an inn when it was raining very heavily, and, of course, had a book with him The rain had driven into the common room a large number of persons, who were making a great noise. To quiet them, Reuchlin called for a piece of chalk, and drew with it a cir cle on the table before which he sat. Within the circle he then drew a cross; and also within it, on the right side of the cross, he placed with great solemnity a cup of water ; on the left he stuck a knife upright; then placing a book-a Hebrew one-within the mysterious circie, he began to read, and the spectators who had gathered round him, with their mouths agape, patiently waited for tbe consequence of this conjuration. The result was, that he finished the chapter he was reading without being distressed even by a whisper of disturbance.
G. W. Kendall, formerly of the New Or leans Picayune, is farming in Texas, and ex perimenting upon the Chinese sugar cane. He says it will stand a drouth better than any thing he has ever seen.

