
[Reporied Offlcially for the Scientific American.] LIST OF PATENT CLAIMS Issued from the United States Patent Oflice for the week ending september 16, 1856.

 tated by he gearing
the purpose specifited.

American Asoociation for the Advancement

of Science.-(Concluded from page 11.)
Storms and Ventilation.-Dr. Reid, of Edinburgh, exhibited the operation of an Argand gas-burner, with a glass chimney, an apparatus being attached under the burner, by which he could regulate at pleasure the amount of
air going inside, or that going outside of the flame, producing thus the most singular and complicated rotatory motions of the burning gas and floating specks of lampblack. He then gave a brief account of the numerous
experiments which hehad tried concerning the rotary motion of the air under a great variety of circumstances, and showed how the results might aid us in forming a theory of storms, but more particularly how it would aid in general cheories of physics, and
rangements for ventilation. The difficulty in architecture is that the same mind that plans the warming and ventilating apparatus does not plan the general form and adaptations Another place where the rotary currents ar
of great importance is in the ventilation of of great importance is in the ventilation o tage, and used to promote the health of the miners. Nothing is more interesting to man than the atmosphere in which we live-an ocean without geographical limits-in which and by which we all live, ceaseless in motion
from a great variety of causes, and each movement directly affecting the comfort and health of man.
Every house should be so constructed and arranged as to have a sufficient supply of pure air, as its inmates require an adequate supply of oxygen to support respiration, and if this is not obtained, the health must be injured. How few houses are built with reference to this great principle of health.
.Aneroid Barometers.-Prof. Guyot read a paper on this subject, in which he expressed views of great importance in reference to the character of such instruments. He acknowledged its great conveniences, but against dependence on it for nice measurements of mountain altitudes he entered his formal protes

He had made many experiments and compar-

 isons with good mercurial barometers, and found them worthy of reliance as a scientific instrument, only under the condition that it is kept stationary, and individually tested to learn the correctness for temperature, \&c Had he trusted to his aneroid barometer in his recent visit to the Black Mountains, he would have been led to errors of 400 to 500 feet, as eters that he carried. A traveler who carrie an aneroid alone with him, must not expect accuracy within two or three hundred feet. Simply from motion or from having been subjected to great changes of pressure, it will change its zero without giving any external indication.N. B. Webster exhibited a chart on which were three curves, representing the mortality at Portsmouth, Va., during the months of July August, September, and October, 1855 ; the variations of the thermometer and of the barometer. On the charts were also indications of the atmosphere, the lightning, and the winds, so that the inquirer could study all these points at once. The day of greatest mortality was Sept. 1,--one-tenth of the white population then in the town died in one week. Not sixty white persons who remained in town escaped the fever, and but 37 per cent. of the
patients survived. Among the blacks only 3 per cent. died.
The Gyroscope.-Prof. Rogers read a paper on this philosophical toy. He said these inattention have lately attracted a good deal of which may be made to rotate very rapidly at the end of an axis, which is balanced on a swivel joint at the top of a vertical post. If,
while the wheel is rotating, the axis is thrown out of balance, by means of a sliding weight, the axis begins to rotate in a horizontal direction round the post. This is the simplest form, but others more complicated are to be found. They were first made by Prof. R. W Johnson, of Philadelphia, and had recently been revived in France. The French mathe maticians acknowledge Prof. Johnson as the inventor. He published an article in Sillidescribing his apparatus. Professor Roger then explained the cause of the secondary rotation by the method of the combination of rotations, and by the doctrine of couples of forces. He wished to divest the theory, ifpossible, of the forms ofthe calculus, and present it in the beautiful geometrical manner in which the theory of the parallelogram of rotations enables it to be stated.
Upon the conclusion of this paper a debate sprang up, which consumed a very disproportionate time of the meeting. Prof. Bartlett gave an explanation of the toy, starting from a different foundation; and some of the mem-
bers supposing-as Prof. Rogers himself appeared to do-that Prof. Bartlett doubted the theory advanced in the paper, many needless words were uttered upon the subject. At ength Prof. Rogers acknowledged the truth of several of the views which he had at first
supposed were contradictory to his own, and Prof. Peirce, who had not yet spoken, closed the discussion by a simple statement of the
real points of the case. He observed that real points of the case. He observed that Prof. Lovering had recently presented a complete discussion of the question to the Amerwas in fact contained in that of the common top; and as for the antiquity, the same theory was long ago presented by one Isaac Newton. [Laughter.] Prof. Rogers said that he was
aware of this similarity of the theory of the Gyroscope to that of the top, and of the precession of the equinoxes, and had prepared diagrams to illustrate these subjects, and also he experiments of Foucault on the pendulum which be would have shown to the Associa-
tion as illustrations of his paper, had he thought that there would be time. Prof. Henry remarked that the same problem was found in gunnery, when a rotary motion-as n the rifle-is given to the ball.
We published on page 200, Vol. 11, Scientific American, an engraving of the abovenamed philosophical toy, gave a brief description of it, and made a few remarks concerning the nature of its peculiar action, stating that the same laws which governed its
motions reigned among the stars. That article soon attracted universal attention; gyroscopes were obtained by all the mechanical and scientific institutions in our country ; by numerous clubs, and hundreds of private persons, and it formed a theme of wide-spread discussion ; and on another column, our readers will perceive that it formed a question for discussion to the mathematicians of the American Academy of Sciences, at Cambridge, Mass., as well as the savans at Albany. Prior to the illustration of Lane's Rotoscope on the page referred to, we published a short account, on page 138, same volume, of Fessels'.
This beautiful instrument, under the name of the Gyroscope and Rotoscope, is quite old, but has been known to a very limited number of persons ; it has, therefore, afforded us much pleasure to have been the means of making a knowledge of it so universal.
Rev. B. Powell, F. R. S., in a lecture on Rotary Motion, delivered before the Royal Society, London, in January, 1854, explained the action of the Rotoscope with a model, and resented the same views respecting its motion and those of the heavenly bodies as Professor Rogers. The following is an extract from his lecture :-
"It always affords a sort of intellectual surprise to perceive for the first time the application of some simple and familiar mechancal principle to the grand phenomena of astronomy; to see that it is but one and the ame set of laws which govern the motions of matter on earth and in the most distant regions of the heavens; to perceive a celestial phenomenon, vast in its relations both to time and space, and complex in its conditions, identified as to its mechanical cause, with the rotary movement of a little apparatus on the table before us."
The improved gyroscopes manufactured by McAllister \& Bro., Philadelphia, Pa., exhibit two other motions beside those shown by one illustrated in the article referred to above. It has a variable balance arm, which will make the wheel or globe revolve in one direction if underbalanced; when balanced it will not revolve, but merely rotate; when verbalanced it will revolve in a contrary direction. It shows the principle of rotary moion discovered by Frisi in 1750, namely, that when a body is rotating about an axis and ny cause tends to make it rotate about nother axis, it will not rotate about either, ut about a new axis intermediate to the two. These apparatuses are for sale by McAllister \& Co.. and J. W. Queen Philadelphia.

Pennsylvania Polytechnic College.
The citizens of Philadelphia deserve great credit for the establishment of this new and aseful institution in their city. It was incorporated in 1853, and we understand that it as already been more successful than was anticipated. The building is in Penn Square, and has been undergoing extensive repairs. The chemical laboratory and apparatus room are on the ground floor. These communicate by dumb waiters with the principal lecture room on the second floor, the appointments of which are exceedingly neat and convenient. Communicating with the lecture room is the Professor's preparing room; north of this is the Faculty's office; and next to this, on the same floor, is the room appropriated to the geological and mineralogical cabinets.
These are arranged under three heads $:-1$. Geology and Palaeontology. 2. Minerals hich are not ores. 3. Ores proper. This classification has proved to be well adapted to instruction in the department of mines-one of the most important in the college. The rooms of the academical department, and those of the Professor of Mathematics and Civil Engineering, are on the third floor; and the fourth is devoted to the class rooms of the Professors of Design and of Mechanics. It is scientific institution in every sense of the term.

Florida Railrords

A railroad is now in the course of construction in Florida, for the purpose of uniting the Atlantic with the Gulf. The object of building such a railroad through this Peninsula, is one of far-reaching sagacity, and will ultimately tell upon the interests and prosper-
ity of Florida. ity of Florida.

