Strimtifit Ameritan.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS

Scientific American, POBLIGHID WEEKLI
at 123 Fulton streat, N. Y. (Sun Building
O. D. MONN, B. H. WALES, A. B. BEAOE.

 Single copies of the paper are on sale at the office
 $\underset{\text { TERM in- } 82 \text { a.year, }}{\text { mainder in six months. }}$
mainder in six months.
ofplosed. Prospectua on last page. No Traveling Agenti
omplofed.

Arilicial Stone

Mr. Hodgson's Fire-Proof Stone, the claim of which may be seen in the list of patents granted this week, is affirmed to stand intense heat better than granite, or even than many varieties of fire brick. The granite or quartz used in its manufacture is readily made friable in the usual way, by heating and plunging in water, and neither the materials nor the process appear to be very expensive. It is wor thy of attention.

Corn Haskin: Machine

This engraving illustrates a machine al resdy in practical and successful use, for not only ridding corn of its husks and nub, or stem, but for so crushing and cutting the husks, and more especially the short portion of stalk termed the nub, that they are prepared for fodder by the same operation.
One important feature of the machine is but partly in sight in the main view, and is added above it at fig. 2. The principle features of the machine comist, 1sh, in meane for cutting off the nub or nubbin; 2d, in devices for car rying forward the ear thus treated, and for agitating and loosening the husks, and 3d, in powerful rollers slightly fluted. which seize all the loose parts and draw them through, grinding and cutting them fine by the same operation, while the ear of corn, being rejected by the rollers on account of its size and its smooth, hard character, is quietly dropped in to a depository below.

The power may be of any kind, and may be applied at any point in the train of wheels. In the engraving it is applied to the shaft of the wheel, B, hy means of a belt acting on g light and loose pulley on its further extremity. Th's gives motion to E , and this again to F and F^{\prime}, and also by gears on the further ex tremities to a roller between them. Both F^{\prime} and the unletterred roiler are flated, though not as deeply as appears in the engraving, and both, in common with F, are kept down by stiff spiral springs as represented, upon the rollers, E and R below. These constitute the train of rollers which treat the fodder, the roller, R , being armed with knives to complete the operation, and discharge it finely cut.
There are two endless belts, the upper of which, O , is armed with spikes, the lower, D , is armed with both longitudinal slats and spikes. Both belts move in the same direction, and with different velocities, and serve to carry the corn forward, loosening the husks, and present it in such a manner to the fluted rollers that the latter are certain to deprive it of all the loose material before allowing it to fall through the narrow space re maining between them and the belt. The rollers which carry the upper bolts are also, as represented, pressed down by springs, so as to cause the belts to rub with some violence on the ear of corn in passing through, but these springs are much weaker than those on the boxes carrying F^{\prime}, etc.
The device for cutting off the butt or nubbin is a vibrating knife, I,-figs. 1 and 2. It is mounted immediately back of the cross bar, H This cross bar has two holes countersunk, so as almost to receive a full-sized ear

BRYSON'S CORN HUSKING MACHINE.

f corn, the hole being ample to admit the nearly endwise through the belts, and are
ub with the roots of the husks. The knife, I, is connected at its near extremity to the lever, H, and this lever is setaated by ranning in the oblique groove, g, in the surface of the pulley or cam, J , so as to receive a quick reciprocating motion.
The attendant takes an ear of corn in each hand, presents them butt foremost to the conntersunk holes and then drops them on the belt, to seize two more. The ears thus pass

Conspicuous among the many quite recen mprovements in dentistry stands the construction of continuous or solid gums, for connecting the teeth with each other and with the plate, when a full set or an 7 consid erable portion of a set is supplied. Although he validity of the patent therefor has been and still is, sharply contested, we believe the material manufactured by Dr. John Allen, of his city, composed of flinty substances which melt at a little less heat than the teeth, is the most popular for the purpose, as it is almost free from any disposition to contract, and thus to warp the plate when exposed to the intense heat required in the baking process The old process still in vogue with many dentists, employs teeth having each a corresponding short portion of gum cast on it, riveting, but, although it requires much great er mechanical skill in the operator, the really
hrust against the husking rollers, where they stand like rejected suitors, until by the continuad agitation they are torned quarter around, and dropped through, a process which allows ample time for the rollers to seize and remove all the loose integuments.
Further information may be obtained by addressing the patentee, Mr. Robert Bryson at Schenectady, N. Y., or Eliphalet Nott, D.D President of Union College, same place.
progressive men in the profession are now adopting the continuous gum, on account, partly, of its greater strength and superior

pearance, but mainly on account of its cleanliness. The patched ap sets, made of eeth and gums in fragments simply riveted, are fall of joints, forming cavities where food and saliva lodge and become offensive unless leansed with extreme care, and it is obviously impossible, from its construction, ever fully to cleanse the narrow and crooked fissures thus made.
The improvement represented in the accompanying engravings, relate to methods of attaching the teeth to the plates by wires, etc
which are soldered before the gum composition is laid and finally covered by the same. The earthy composition of the gum is strong, but not sufficient of itself to hold the teeth with certainty in biting very hard substances, and even if it were, a connection of some kind is always absolutely necessary to confine the teeth in exactly the right positions until the composition hardens. We cannot be expected to teach the profession all the details for applying this invention, nor all the points of difference between this and other methods, but will endeavor to set forth its general features.
The heat necessary to consolidate properly the porcelain or earthen gums, forbids the employment of the usual metals in connection. Gold or silver, which me!t at from 1800° to 2300° Fab., would be of no service as bands or ties, and even when used as solder for the quite unfusible platinum, melt and would, if used in any sensible quantities, flow away unless confined by the surrounding earths. In this invention platinum plates are used as a foundation, and platinum wires as the means of attaching the teeth thereto, after whic the whole is vicely covered with the melte composition, taking care to fill all the interstices between the wires, and to apply the proper oxyds of gold, etc., for producing the proper pink tint natural to the real healthy gum, after which the whole is melted at a very high heat and turned out perfect.
Fig. 1 is a set of teeth represented partly supplied with the gum comprsiion. Fig. 2 is a side view of the set before the composition was applied ; fig. 3 is a vertical section through the same, the section passing through the certer of st tooth; fig. 4 is a strnilar vec tion between two teet. 1 ; fig. 5 is a tooth prop erly wired according to this invention before its introduction into the set, and fig. 6 is the wire (a flattened strip of platina) introduced in the tooth before it is baked. We may remark here, that these teeth, as well also as those above mentioned more generally employed, are manufactured on a large scale from a kind of porcelain, and sold to the profession, and are not, as supposed by many, made up on the spot where used, by the skill of the operating dentist alone.
Commencing with fig. 6, and proceeding backward, we may describe a a as the short bent wire introduced deeply in the base of each tooth in the course of manufacture. Fig. 5 is a tooth complete with the ends of the wire projecting. Figure 4 shows a tooth in place, B being a plate accurately swaged to correspond with the form of the gums and roof of the mouth, and e a smaller plate similarly swaged to cover the roof of the mouth alone. C is the earthenware material The little circle, c, shows a cross section of a stout wire which travels continuously around the whole set to steady them, and f is a brace stretching from c to D , and soldered to each Fig. 3 shows similar parts, but with the short end, a of the original tooth wire bent around and soldered to c, while the long end, a^{\prime}, is extended up and soldered to B. Fig. 2 shows all the parts in place, and indicates, by the letter d, a kind of folded edge (equally visib'e on figs. 3 and 4) formed on the edge of B. Fig. 1 explains itself, and it is only necessaro to add that the additional plate, e, is soldered on, and the edge, d, is turned down, both for the same purpose, i. e., to offer better facilities for joining the gum composition, earthenware, or porcelain, 0 , to the otker parts by a perfectly smooth and finsh joint, so that the set, when complete, shall be as nearly like the natural mouth as possible. Teeth thus set are much preferable to the and method on every account, and we bel eve usually cost considerably more.
For fartherinformation regarding. this improvement addreas the inventan, George E. Hayes, Buffalo, N. Y. Patented Jan. 27, 1857.

[Reported officially for the Scientific American.] Issued from the United States Patent Office Issued from the United siates Patent Office
FOR THE WEEK ENDING MARCH 3,1857 .

 ful in the prrauction of axe poolls. bar or block of iron b
I liam the preparation of the
longitudinal rolling between rolling dies operating sub stantially as described.t. formit with a projection on one
face in the middle of its length, and two projectionson
 segment diesunder a modo ofoperationsubstartially such
as described, to reduce the thicknoss of the cheoks
owards the edgest and the required swell on the edges
of the cheeks. substantial:y as described and for the pur pose specified.
 which produces the
grinder, as specified

 Beveling AnD. Jointivg STAVEs-Mrastus M. Pit
man. of Warren Co, Var donot daim he reiproca-
ting plane having reversed bits, or the manner of tis mo-
tion. tion I claim the combination of the reciprocating plane,
But hating reversed bils. cc, and the motion refered to, and the carriage, D, with the inclined ways, E E E 'con-
structed, arranged, and operate in the manner and for
the purposes shown and described.

 oriier connected therewith for circulation and othe
purposes, substantialy as described.
Centrivugal Frictron Ciutch.- Kensselaer Rey

 due to the centrif cual force generated by the rotation
dund
and by which they are forced on onard agianst heinne
periphery of the wheel to be clutched, as described thereby clutching the parts by a fix ce no nreater than
that due to the triction produced by the centrifugal
force under the detemped prototions, weight, and
motative velocity of the friction brakes.

 droeper and shallower alternatelly, and alaso separating th
dumble platas

 for ceansing clothes of every description, and for toile
purp oses generally. as well din point of haopne
voni ency, and dispatch with which it is made.

 TiN. Pans- E. F. Parker and J. Smead, of Proctors.
ville. Vt. . We claima meilk pan with a struck up bot.
tom, and united to the side in the manner and for the

 gas therefrom, thereby providing against promature ot
plosion, and retaining the heat in the melted metal

 [The engine to which this invention chiefly applies the semi-rotating or vibrating piston variety, like th well.known steam engines of the war steamer
ton." The valves receive their motion from an arm on the end of the main rock shaft, B, and are worked ver suddenly, and by
class of engine.]

 dis

 in construction, easily applied, effective, and durable
We regard it as a valuableimprovement]

 In this harcoster provision is made fordichararing the Ise far resulating the izeor of the shaeaves. It allo pro the machine in such a manner that the sickle is allowed
to rise and fall, and thus to conform to the surface of the

 thin.

 ISoo ongra
ther pased

 seroibed.

 ployment of spinging shelves, or their equivalents, for
the purpor of gent agtating the liquors, while ihey
are exposed to a moderati heat substantially as described. a re exposed to a moderata heat substantially as described.
[Wines and liquors are in goneral esteemed in propor-
tion to their age. Various expedients have been resorted to for giving to liquors " age." more rapidly. In ancien
times the wine was placed in skins, and hung up in the moke of a fire, where it would receive a gentle heat. A constant movement of the particles of the liquid was thus
occasioned, and the qualities due to age were obtained in
less timethan when not exposed to warmth. frequently adopted oflate eyears to obtain "age"" in the
least period of time is to put the liquors on board of ships, least period of time is to put the liquors on board of ships,
and send them on voyages through the tropical cllmates, The gentle undulations of the sea combined with the heat
of the atmosphere in the tropics give both motion and warmth to the liquids by which their qualities are ensi.
bly improved. In other words, "age" is thus imparted to them, and liquors are increased in price in proportion
to the number of times they have crossed the equator to the number of times they have crossed the equator.
Messrs. Walcotts' improvement consists in subjecting the iquors to what may be termed an artificial sea voyage,
They place the liquor upon shelves, which are gently swung to and fro the apartment being suitably heated
and kept dark. Heat and undulation are thus conveiently communicated, and the desired "age" is obtain
din much less time than by any other known method This improved process continued for one year gives a altain to the liquors which requinary means.]

 1844. 1 claim the pair tight glass cylinder. B, passing throug

 Yot claint the manner of moving the rudder by means of a
rackand pinion orerated by garing
rad the tiller working into a stationary curved rack attache
to the deck of the vessel in connection with a friction roller working againsta amooth stationary surface topre.
vent the ruddor from being presed out of its place, in Vent manner surbstantially ag prescribed ou
Seond, I claim the arrangement

 the following were issued for the week STor.Morioxs roin 4 ABCH 10, 185 .

ine at prosent t in mese, at small oxponse, using the seme Toam choet nad dilid opalve. It is on thit account, ono

 add gre

 hard of off pats. forthas

 [Thits a aimple and very effoctive improvement]

so, claim the key.hol boted together.

[Nany of our best locks are fitted so that the face of
the key-hole is recessed or sunk some quarter inch or more below the general plane of the surface of the door or chest. This construction is stronger and more elegant
than to have the key-hole flush, but it does not admit of than to have the key-hole flush, but it does not admit of
an escutcheon in the usual form, as there is not room an escutcheon in the usual form, as there is not room
within the recess for such to be turned aside. This simple invention provides a hinge in the escutcheon, and ounts the difficulty.]

 trame, T, and the simultaneous graduated downward
movement to press and guide the steel plate upon the
spiral cone.

Shenring STEEL Plates-Perry G. Gardiner, of
Mem York City Iclaim te arrangement of the mova-
ble bracket plate, M, so as to ardust the lowtr steol cut.

 the whole operating substantially as specified.
[This is, in effect, a very simple and easily worked pump for the important purpose of injecting oil to any
part when opposed by pressure. The small piston is part when opposed by pressure. The small piston is
raised by hand, and the small cylinder fills very natural. 1y with oil, after which, by turning a cock, the pressure
of the steam or other fluid is made to act above the piston, and thus to aid in forcing the oil to the place de ton, and
sired.]

 and neitingor softening the emme so that twill adhere
to the surface of the iron asit becomes cold.
The same process may be used for coating or covering
copper, brass, and other betals.
 ficial stone composed of felspar., Mica, and quartz, and the
other substances or materials described, in the manner
and for the purpose set forth. onher fubstances or mate purposesent forth.
and fris is a readils molded
[This
[This is a readily molded stons, intended as a substitute
for plaster and stucco work, for architectural ornaments. for plaster and stucco work, for architectural ornaments.
The material is pulverized granite, sulphates of lime,
zinc, and iron, also starch and tannin, peculiarly wetted zinc, and iron, also starch and tannin, peculiarly wetted
and mixed, and allowed to stand a few minutes in an oiled mold. We shall recur to this again]
 having its pariphery or face coated with sand or emery,
for such wheels have been previously used for poish-
ing. ing.
But we claim shaping or hollowing out the faces or
upper sides of ochair seatst by means of a grinding or cut-
ting wheel. D when upper sides of chair seats by means of a grinding or cut-
ting whel. Do when said wheol has a convex face or
peripher. coated with sandemery. other suitable
substance, and using in conjunction with said wheel, the screw. f, or its equivalent. With the tircular
plater disk., attached, substantially as described. ©ne of the most important of our wooden- ware manuperly against the wheel. The whole is much simpler than the machines heretofore in use for the purpose, a
the surfaces produced require no sand-papering.]
Hypsuluric Jack-Geo. Lindsay, of New York City;
I do not claim the device or arrangemente of the pumps
or working parts, or the safety and lowering valve
 ton rod. H, or or the ram, D.
Hut In iaim the arrangement of them all combined as
constituting the specific whole machine, as shown and
set forth. [The great merit of this over the admirable jack pumps
before in use, is its ability to serve either as means of di rectly forcing apart or of as directly and conveniently
drawing together. Hooks are provided tor this latter end, and a new implement is thus produced of great practical value in many situations.]

 R

Bending Sheet Metal-Daniel Newton, of South-

 I, applied and operating substantially as described in
combination with the oscollating olke. H, the travele
p,and the roller, r , or its equivalent, for the purposes set
orth.
[Bydirect acting engines in this claim is meant those
which have no crank motion or balance whel, but reciprocate directly, as in many pumping and blowing
engines, and in somes saw mills. The elastic lever and
ycke give just suffient yoke give just sufficient lead, and yet ensure a full open-
ing to the valve. This is an improvement in the engine illustrated in page 44 of the present volume.
FLuid GATE or F'AUCints-J. W. Smith.

 rent distances from the center of the stind and at silited
arm, ih, for operating in the manner and for the purposes
substantially as set forth.

 (This is a valuable improvement in the facilities for this fine branch of work, but cannot well be further ex-
plained without the aid of drawings. This chuck is par-
ticher ticularly adapted to the watchmaker's la
inventor illustrated on page 233, vol. 10 .

 fombinat

 brimstone or wax around
securell.
Third. We claim the application of the sliding collar.
h, on a projectile carrying a cylind ric metallic plat
 after being dis charged from the gun, either by the actio
of a prtng, or the resistance of the air to guide its direc
tion.

 sition

[This appears to be one of the most simple and effec-
ire of the many devices for regulating windmills, and iive of the many devices for regulating wi

 and

Cooxing Stoves-Allen Comstock, of Quincy, ill Stove Doors-M. C. Burleigh, of Great Falls, N. Y [Pleasing effect on the eye is the whole object of this
design. It involves a central ornament within an annular bead and radial corrugations on the face or panel of
the door, with various beads around the edges of the panel.]

Bending Steamed Wood.

Messers. Editors-In late numbers of your ournal I have noticed frequent mention of machinery for bending timber. The principle which effects the purpose (and without the application of this principle timber cannot be successfully bent) as has been described, consists of an end pressure to prevent the
separation of the fibres on the outer surface while in the act of bending. This principle is not new. We have had it in successful operation for several years, and can bend any kind or quantity of wood we ever tried afterbeing properly steamed. On my machine we have bent poplar timber taken from near the heart of an old tree, and every mechanic knows this to be the most obstinate of timber to bend, to orm near half of a circle, whose diameter and a half square, and after being dressed hardly any mechanic would discover that it was not the natural growth. This machine has been exhibited at the Mechanic's Institute and State Fair, with timber that was bent
upon it, and elicited the admiration of all who saw it. The machine I speak of is used at the Tennessee Plow Factory, in Nashville. The device is not patented, but is pablic property, and for the benefit of your readers inerested in bending timber, I will briefly escribe it.
My machine has an iron form of the shape
desired to make the inner curve of the timber when bent, and an iron lever, with one end made thin and pliant, to bend with little resistance. This lever has a hook on the end, to attach it to the form, across the end of the timber, and a shoulder on the other end, outside of which is a nut, to screw the shoulder up against the end of the timber. When the timber is properly steamed, it is placed on the form; the lever is hooked on the end, and screwed up close against the other end, and then pressed down to its position. In the middle of the lever is a joint similar to a strap joint, with a long mortise through, to receive a key. Sometimes as the bending proceeds it is necessary to drive the key in and make the lever shorter between the again in in order to effect a perfect bend, and will so strongly resist a compression of the fibre-or if the growths are large it has the same effect-that the nut on the end of the lever must be unscrewed when the timber is partly bent, to admit of stretching a little ; this will secure a perfect bend, and obviate the tendency of the fibres to kink on the inside of the curve. This key and nut on the ever gives the operator entire control of the timber, and enables him to manage every piece as circumstances may require

Thomas Sharp.
Nashville, Tenn., March, 1857
Proper Pressure to Blow-Off Boilers,
Messers. Editors-Will you be so kind as to inform me if it makes any difference how high the pressure of steam is in a boiler when blown off, if the fire is first withdrawn so as not to injure the boiler? I find nothing on the subjec: in any books that I have on the steam engine.
C. A. C.

Yes. It makes a great difference in the incrustation of a hoiler whether water is discharged hot or cold. If water is calcareous, it tends as soon as boiled down a little to deposit a crust on the whole interior. It happens that hot water, instead of as might be naturally supposed holding a larger quantity of these earthly particles, does not hold as much as cold, and hence arises the difference in effects in blowing off at different pressures, and consequently at different temperatures. If the water be blown out of a boiler at full pressure, it only carries out with it the particles then undeposited, (except, of course, a certain quantity of mud stirred up mechanically) ; but, if allowed to cool before it is withdrawn, the cold water will dissolve a part of the scale. Wiessenborn's valuable preventer of incrustion is based on the supeperior tendency of heated water to deposit, and the fact of this tendency is well known to chemists, and to many engineers, though not ning between this city and Philadelphia keep their boilers perfectly clean, by taking care to draw out their water cold at the end of each trip, and replace it by new, while if they experimentally or carelessly once blow it off under pressure, they coat the whole interior with a thin white limy scale. Tbe steamers plying between this port and Fall River do not lie long enough at either end to so cool their boilers complete, but do so as far as possible, even by pumping in cold water before blowing off; and as a general rule it may be said always cool downyour boiler, and let the water flow out softly if you can, in preference to blowing it out under steam.

Balancine slide Valves.

It is a question of some interest whether Mr. Worthington, or any one else, claims to have a patent on the use, in every way, of a balance piston working in a cylinder, and connected to a slide valve, so as to partly annibilate the effect of the pressure thereon. It is in common use, and has been for several years. The locomotive, " Iron Dake," in the London Exhibition, 1851, had her valves thus balanced.
D. D. Owen, the siate geologist, reports the existence of great deposits of brown Hematite ore in Kentucky, which yield an average of from 62 to 66 per cent of pure iron.
Cunningham's Self-Reefing Topsails, an inention by which the sail is rolled up by re riambir of English vessels.

