a Weekly journal of praccical information in art, science, mechanics, Chemistry and manufactures.

which bears against the slottod arm. The gage for governing the width of the stuff spit is here shown at I.
I 10 are the principal features of this machine, and combined with otbers spoken of previonsly, it is a very accol one. It was patented through the Sci-
ation in the neighborhood of Derby, and has been worked for many centuries. The great bulk of it is used for making plaster of Paris, and as a manure; and it is the basis of many kinds of cements, patented -as Keene's, Martin's, and others.
"To get it for these purposes, it is worked by mining underground, and the stone is blasted by gunpowder; but this shakes it so much as to be unfit for working into ornaments, etc.; to procure blocks for which it is necessary to have an open quarry. By removing the superincumbent marl, and lasing bare a large surface of the rock-the alabaster being very irregular in form-and jatting out in several parts, allows of its being sawed oft in hlocks of considerable slre, and comparatively sound (as is illustrated by the large tazza in the Museum of Practical Geology). Thls stone, when protected trom the action of water, is extremely durable, as may be seen in churches al over the country, where monumental efflgies, many centuries old, are now as perfect as the day they were made, excepting, of course, willful injuries; but exposure to rain soon decomposes the stone, and it must be borne in mind that it is perfectly unsuited for garden vases or other out-door work in thls country.
"In working, it can be sawed up into slabs with toothed saws, and tor working moldings and sculptures, fine chisels, rasps and files are the implements used; the polishing is performed by rubbing it with pleces of sandstone, of various degrees of fineness, and water, until it is quite free from scratches, and then giving a gloss by means of polishing powder (oxide of tin) applied on a pirce of cloth, and rubbed with a considerable degree of friction on the stone. This material gives employment in Derby to a good many hands in forming it into useful and ornamental articles, and is commonly called Derbyshire spar; most of the articles are turned in the lathe, asd it works somethlng like very hard wood.
"Acother kind of gypsum also found in Derbyshire is the fibrous or silky kind; it occurs in thin hela, from one to six inches in depth, and is crystal. lized in long needle-like fbers; being easily worked, susceptibie of a high polish, and quite lustrous, it is used for making necklaces, bracelets, brooches, and such like small articles."

CLYDONICS.

At the last meeting of the Polytechnic Association the following paper was read by Protessor S. D. Tillman, the President, in conclusion of the paper on the same subject which was published on page 225 of our current volume:-
The celebrated historian, Buckle, believed the most effective way of turning observations of natural phenomena to account, would be to give more scope to the imagination and incorporate the spirit of poetry with the spirit of science. By this means our philosophers would double their resources, instead of working, as now, maimed and with only one half of their nature. They fear the imagination on account of the tendency to torm hasty theories. But surely all our faculties are needed in the pursuit of truth, and we sannot be justified in discrediting any part of the human mind.

These views, if not applicable to methods of original research, are certainly ot great moment in considering the best means of diffusing scientific knowledge; and if there is any branch of philosophy which is preeminently entitled to bring to its service the free play of fancy, it is that treating of the force of waves, whether propagated tbrough liquids, ærifor.a fluids or more attenuated media.
the pharos.
A discourse on the structure of the flame of the ordinary lamp might not gain general attention, yet how intense the interest as we speak of the particular light which a captain seeks when his vessels, freighted with human beings, midst storm and darkuess, has nearly reached its haven. There are scattered along our vast boundary five hundred such beacons, kept in operation at an annual expense to the United States Government of more than a million of dollars.

A description of one of these is given in the posthumous papers of the gitted Thorean, just published under the title of "Cape Cod;" and although since the time of his visit a more imposing structure has arisen in the place of the old lighthouse, the account is so graphic, one feels, after its perosal, the satisfac.
tion which he would probably have experienced by a personal inepection of the premises.

THE CAPE COD LIOHT.

"The Highland Lighthouse, where we were staying. is a substantial-looking huilding of brick, painted white and surmounted by an iron cap. Attached to it is the dwelllug or the keeper, one story high, also of brick, and built by Goverument. As we were go ing to spend the night in a lighthouse we wished to make the most of so novel an experience, and therefore told onr host that we would like to accompany him when he went to light vp. At rather earls candle-light he lighted a small Japan lamp, allowiny it to smoke rather more than we like on ordinary occasions, and told us to follow him. He led the way first through his bedroom, which was placed nearest to the lighthouse, and then through a long, narrow, ccvered pasłage was, betiveen whitewashed walls like a prison entry, into the lower part of the lighthouse, where many great butts of oil were arranged around; a winding and open iron stairway, with a steadily increasing scent of oil and lamp smoke, to a trap-door in an iron floor, and through this into the lantern. It was a neat building, with everything in apple-pie order, and no danger of anything rusting there for want of oil The light consisted of fiftern ar rand lamps, placed within smooth concave reflectors twenty-one inches in diameter, and arranged in two horizontal circles, one above the other, facing every way excepting directly down the Cape. These were surrounded, at a distance of two or three feet, by large plate-glass windows, which defied the storms, with iron sashes, on which reated the iron cap. All the iron work, except the floor, was painted white. And thus the lighthouse was completed. We walked slowly round in that narrow space as the keeper lighted each lamp in succession, couversing with him at the same moment that many a sailor on the deep witnessed the lighting of the Higuland light. His duty was io fill and trim and light his lamps, and keep bright the reflectors. He filled them every morning, and trimmed them commonly once in the course of the night. He complained of the quality of the oil which was turnished. This house consumes about eight huudred gallons in a year, which cost not far from one dollar a gallon; but pernapsa few lives would be saved if better oil were provided. Another lighthouse-keeper said that the same proportion of winter-strained oil was sent to the southeramost lighthouse in the Union as to the most northern.
"Formerly, when this lighthouse uad windows with small and thin panes, a severe storm would sowetimes break the glass, and then they were obliged to put up a wooden shutter in haste to save thate ligents and reflectors; and sometimes in tempests, when the mariner stood most in need of their guidance, they had thus nearly converted the lighthouse into a dark lantern, which emitted only a few feeble rays, aud thuse commonly on the land or lee side. He spoke of the anxiety and sense of responsibility which he felt in cold and stormy nights in the winter, when he knew that many a poor fellow was depending on him, and his lamps burned dimly, the oil being chilled. Sometimes he was obliged to warm the oil in a kettle in his house at midnight, and fill his lanps over again for he could not have a fire in the lighthouse, it produced such a sweat on the windows. His successor told me that he could not keep too hot a fire in such a case. All this because the oil was poor. A Government lighting the mariners on its wintry coast with summer-strained oil, to save expense! That were surely a summer-strained mercy
"This keeper's successor, who kindly eutertained me the next year, stated that, one extremely cold night, when this and all the neighboring lights were burnirg Summer oil, but he had been provident enough to resarve a llitte winter oil against emergencies, he was waked up with anxiety and found that his oil was congealel and his lights almost extinguished; and when, after many hours' exertion, he had succeeded in replenishing his reservoirs with winter oil at the wick end, and with difficulty had made them burn, he looked out and found that the other lights in the neighborhood which were usually visible to him, had gone out, and he heard afterward that the Pamet River and Billingsgate Lights also had been extinguished.
"Our host said that the frost, too, on the windows
caused him much troeble, and in sultry summer nights the moths covered them and dimmed his lights; sometimes even small binds lew aginst the thick plate glass, and were fount on the ground in the morning with their nedhs broken. In the spring of 1355 he found nineteen small yellow birds, perhaps goldinchos or myrtle btrds, thus lying dead around the lighthouse; and sometimes in the fall he had seen where a golden plover bad struck the glass in the night, and left the down and the fatty part of its breast on it.
" Thus he struggled by every method to keep his light shining beforo men. Surely the lighthouse keeper has a responsible, if an easy, office. When his lamp goes out, he goes out; or, at most, ouly one such accident is pardoned.
'I thought it a pity that some poor student did not live there, to proft by all that light, since be would not rob the mariner. 'Well,' he said, 'I do sometimes come up here and read the newspapor when they are noisy down below.' Think of fifteen Argand lamps to read the newopaper by ! Government oil! light enough, perchance, to read the Constitution by! I thought that he should read nothing less than his Bible by that light. I had a classmate who fitted for college by the lamps of a lighthouse, which was more light, we think, than the University afforded."

wave-motions.

Let us in imagination stand with Thoreau on the luminous tower and amid the agitations of ocean, air and æth, consider the laws by which The Presiding Power controls these elements. The restless sea through all its movements, from ripple to billow, obeys the same mandate; the time of each oscillation is proportional to the square root of the length of the wave. At great depths the motion of the fluid is wholly insignificant, because at a distance below, equal to the length of a wave, the motion is only $-\frac{1}{3} 5$ of that at the surface.
The size of the wave depends, therefore, upon the force of the wind and the depth of the sea. The largest on the Atlantic observed by Capt. Scoresby were 550 feet long and 30 feet high.

AIR-WAVES.

The air, however, is not confined like the sea, which ngs omis an npward and downward motion, except near the shore, where the force it contains would escape. But the whole mass of air, moving as wind, has also a vibratory or wave-motion producing sound. It the distant bell we hear is tuned to middle C of the musical scale, according to the new French standard, aud the temperature is at 16° centigrade, its sound is produced by air-waves vibrating-not un-dulating-at the rate of 522 per second, each of whici is alout $2 \cdot 15$ feet in length. The lowest octave of this note which could be heard would, according to Savart, be the result of 16.31 waves per second, each about 68.8 feet long, and the highest octave by waves moring at the rate of 33,408 per second, each 0492 of a foot in length.

ethemates.

Turning now to the light produced by the fifteen Argand lamps, we behold still more wonderful wave phenomena. The all-pervading æth is, for miles around, thrown into undulations moving at an average rate of 582 million of million per second, having an average length slightly exceeding twenty-one millionths of an inch. These numbers, determined by repeated experiment, appall us, and we turn to that branch of the subject where results are more palpable.
the chemistry of flame.
All the whenomena attending the artiticial production of light is not yet fully understood. Light is only one of the effects of the burning of hydro-carbons in the gaseous state. The solid candle and the liquid contents of the lamp must be volatilized, and brought into the same expanded state as ordinary illuminating gas before they can be burned. This conditon is attained, in the case of the candle, by the heat of the flame; the liquid wax or tallow, by capillary attraction, is carried along the wick to the point where it is turned to gas. Yet light does not emanate from gases. Draper found that while gases heated to over 1100° centigrade do not give light, all the solids sabjected began to be luminous at about $510^{\circ} \mathrm{C}$, and they display the several colors of the prism, and finally emit white light.
In the process of burning illnminativg gas, the

