Scrientifit Ameritan.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS

Scientific American,
published wrealy
ton street, N. Y. (Sun Buildings, HY MUNV \& CO.
O. D. MUNN, S. H. WALES, A. E. BEACH Responible Agents may also be found in all the prin
ipal citios and tows in the United States. Sampsan Low, Son \& Co.. the American Booksellers
${ }^{\text {St }}$ Lugate Hill . London, Eng. are the English Agents
to receive subscriptions for the Scientific American. Single copies of the paper are on sale at the office pubicication and at all the periodical stores in this city
Broollyn, and Jersey City. TERM3- $\mathbf{m I}^{\text {a.year, }}$ $\underset{\substack{\square \\ \text { employed. }}}{\text { Sen }}$

Industrial stalistics.

We are indebted to S. W. Huse \& Co., pub lishers of Vox Populi, for the following indus trial statistics of Lowell, Mass :-
The Middlesex Company make use, annually of $2.000,000$ teasels, $2,000,000 \mathrm{lbs}$. fine wool $50,000 \mathrm{lbg}$ glue, $\$ 30,000$ worth of dye stuffs, and $\$ 13,000$ worth of soap;
In addition to the above, the Merrimack Manufacturing Co. use $1,000,000 \mathrm{lbs}$. of madder, 380,000 copperas, 60,000 alum, 50,000 sumac, 40,000 soap, and 45,000 indigo, per an num.
The Lowell Bleachery uses $40,000 \mathrm{lbs}$. indigo, and $\$ 30,000$ worth of other dyeing mater ials, per year.
The population of Lowell in 1828 was 3.532 In 1840 it was 20,796 . In 1850 it was 33 385. Increase in ten years, 12,289. Population of Lowell in 1855, 37,553.
The Lowell Machine Shop, located among the above mills, can furdish machinery complate for a mill of 6,000 spindies in three months.
The several manufacturing companies have established a bospital for the convenience and comfort of persons employed by them respectively when sick, which is under the super intendence of one of the best of surgeons and physicians.
In Lowell there are twelve great establishments, which bave an aggregate capital stock of $\$ 13,900,000$; they have 52 mills, including shops; run 394,344spindles, and 11.889 looms. They employ 8,990 females, and 4,397 males. They manufacture $2,374,000$ yards of cotton goods per week, 44,000 of woolens, and 25,000 of carpets. They use weekly 765,000 pounds of cotton, and 91,000 of wool, and consume ännually 62.317 gallons of oil, and 20,000 of lard, 29,750 tuns of antbracite coal, 33,300 bashels of charcoal, and $1,649,000 \mathrm{lbs}$. of starch. The average produce of each loom weaving No. 14 yarn is 45 yards per day weaving No. 30 yarn 33 yards per day.

It is the water power of Lowell which, with the skill and energy of her citizens, have made it such a great manufacturing city. The factories although heated by steam are worked with water, there being no less than 34 hreast wheels and 46 turbines employed- 21 of these center-vent wheels. The total water power engaged for manufacturing purposes, we learn from Mr. Francis' work on Hydraulics, amounts to 8965 horse-power.

The Cotton Crop of 1856
The Southern Cultivator says:-" In order to ascertain the extent of the crop, General McQueen, Member of Congress from South Carolina, adopted the happy and reliable expedient of addressing letters to the Representatives from the cotton-growing States, and from their several responses he has made up the estimate. According to his figures, the crop will not exceed $2,700,000$ bales-about 800,000 bales short of last year."

George Carstensen, one of the designers and architects of the Crystal Palace in this city, died suddenly in his native city, Copenhagen, Denmark, on the 4th of January last.

The accompanying figures illustrate the Seed Sower of R. Hurd, of Moline, III.
Figure 1 is a perspective view of the machine at work on the broad prairie-it is drawn by an original, grave, and majestic, but, withal, a spanking team. Figure 2 is a vertical section of the machine.
The seed is kept in a hox, and a series of small cups, on an endless belt, pass through it, carrying up the seed (a grain elevator,) and depositing it in a coaveyor, from which it is conducted through the drill or spout, into the furrow in the rail, and then covered by a broad-faced whe
path of the drill.
A is the frame, which has two carriage wheels, B B; and a broad wheel, C, which follows directly behind the seed drill, pressing down the soil, and covering the seed. The seed box, H, is secured on the frame, and contains the seed, a. A small pulley, G, and another, E, are secured in the frame and rotate on spindles. An endless belt, having a series jof small metal cups, F F, secured on it, rotate over these pulleys, as rep resented, lifting and carrging up the seed elevator-like, and depositing it in the conveyer spout, whence it passes down into the drill. The seed box or bopper, a, has a bottom. b, secured to a spring, c, which allows it to open upwards when a seed bucket or cup passes into the box, and it prevents the seed falling out. The toe or share of the drill is secured to the hind end of bar 0 ; the latter is pivoted to a vertical piece in front of the frame. The drill share is made to receive the tubular conveyer, N, and it is wide enough to be raised upon it a sbort distance to make furrows or drills of any depth desired. Two flat metal rods, L L, perforated with gauge holes, are secured-one at each side-to the bar 0 , and are held by pins in the cross bar, M , of a small frame, and thus the drill is set to any depth required. By raising these rods and securing thepin in one of theirlower boles the toe of the drill may be raised to make a shallow drill, and vice versa. The bar, M, forms part of a small frameon the top of
truck frame, A. This frame is pivoted in a vertical standard at each side, (one is shown in fig. 1, placed a short distance in front of pulley, E^{\prime}.) The longitudinal bar attached to it, extends to the back of the conveyer under the driver's feet, where it is connected to a cross piece, on which is the handle, M. By raising this handle, therefore, the driver can raise the drill share entirely out of the ground in an instant, to clear any obstruclion. When it is desired to stop the seed irom being deposited, the top axle of pulley, G, can be raised to tighten the elevator band to suck degree that it will not revolve ; or it can be

owered to slacken the band sufficiently so that it will not revolve. The bearings of the xle of the pulley, G, are set in movable boxes, , in the prights, H ; these movable boxes re secured to a metal bail, J, which is held a graduated catch bar behind the top of the Breser. By raising the bail, J, the helt of
the seed conveyer is tightened ; or it is slack ened by depressing it; it can also be held at any suitable point by the catch rack. As the machine is drawn forward, the ele vator receives motion from the cord passing from pulley, D, on the carriage axle, around the lower pulley, E, of the elevator. The grain or seed is deposited with certainty by this machine, because the driver can always see whether or not the elevator discharges its seed into the conveyer of the drill. The seed cups operate with certainty to take up seed from box a, regularly and uniformly; they can also be set in greater or less number on the belt, to derosit more or less seed, as ma be required to plant either in regular drills or in hills.
The patent was issued for this machine on the 25th Dec., 1855, the claim for which will be found on page 130, Vol. 11, Scientrfic Americak. At that period the patentee resided at Spring Hill, lil, be now resides at Moline, in that State, to which place letters requesting further information should be dis rected.

Transallantic Telcgraph Company
The stock of the company engaged in the mammoth enterprise of uniting Europe and America by telegraph amounts to seventeen hundred and fifty thousand dollars $(1,750,000$ It has been subscribed as follows, the shares being $\$ 5,000$ each :-London capitalists take 101 ; Liverpool, 86 ; Glasgow, 37; Manches ter, 28 ; other English towns, 10, and the bal ance, 88 shares, in America. America owns therefore, $\$ 440,000$, or a little more than one fourth of the cable.
Although opposed to the calculations presented last week, we may mention that an experiment is obscurely reported to have been made by a Mr. Siemens, in which communi cation was effected as rapidly as twenty words per minute, through 3,000 miles of continu ous wire cable above ground.
A factory for making oil from cotton seed now in operation at India Point, near Providence, R. I.

IST OF PATENT CLAIMS Issued from the United sitates Patent Ofllee

 nor do claimstufting wet hides by a fuling mill wherein
by the per cuns sive orece of the beaters thereof the water
or tan liquor is mure or less torced out of the hides and

 atmosphere during the application or oil or grease
thems but also the handing and working or habor inc
tent ihereto. and pertrorm the operation of expling th
water or tan liquor from them in much lesstime com
wat

 peoglingd cylind er subsequently restoring or plumping it
ardimpre gnating it with grea se as explaine d.
MeLonrovs-J. C. Briggs. of Woodbury. Oonn. : I dis-
tinctly disclaim everything in my devicuthich is similar
to
 to the exterior of the wind reservoir and pump.
But claim the exprespion chamber, c. . 4 ith its valve.
f. arran ged and operating in the manner and for the pur['he expression chamber embraced in this improve-
ment in melodeons controls the passaze of air to the ment in melodeons controls the pasagae of air to the
wind-receiver in such a manner as to give any expres sion to the instrument., to produce the sof test tone percep.
tible to the ear. also the loudest which the instrument can execute. This chamber is not intended to be used as
a s substitute for the comman s swell," its object is to ex-
 we do not confine our improvement to be used in revolv-
ing fire arms only, but the same may be used in any
o:her class of ine arms.
 to on the trigger, or any other ar rangement substantially
the samen for the purposeof of kepping the hammeran and the
trigker in their respective positions when at full cock, as
set torth.

 he worth. The stamp. P. working in the swivel bearing
Fourth,
0 , and operated by cam. Q, pin. r, rod \mathbb{S}, 1, and cam, 1)

 [By thisiamporill as described for the pur pose set for th. [By thisimprovement the thills of a cutter or sleigh can
be adjusted and set at any point to suit the circumstances
of the track. The thills of sleighs are generally secured permanently, and are incapable of being thus adjusted this improvement completely o
most convenient arrangement.]
 hop per, B. in the
tial 19 as set forth.
[This is a grass and grain separator, and possesses
qualities desired by every farmer. By providing an
extension extension hopper, with an adjustable end, also a
shoe which has a screen and a fan, all arranged in a peculiar manner.this machine separates all the gras 3
seed from the grain. The sound grain passes into one receptacle. the grass seed into another, and all foreign
substances are thrown out. 1

 Boston. The principal object of joint. H, in ry inven
tion being to confine one portion of dier
oarly as is requisite to a direct or longitudinal motion.

 Levices far removing clods and other obstaclese in the
 operated to receive a quick motion at the proper times for depositing the seed cor rectly in the furrows. The
omprovementis adapted fur planting corn, or any other kind ofgrain. The séd is alsostirred by a device. This whositively necessary for correct planting, especially
whenmoist,steeped seed is used.]
 he adjustable bar and oblique pin with an angulariy
braced panel and bearer or any ordinary panel. as seen
in figures 2 and 3 , on which the angular or other bar may
 Reaping AND Mowing. MAchines-Jeremiah W.
Mulley of Amserdam, N. Y. I claim constructing and
armen
 as to form the track clearer for mowing, or the plat form
orreaping. in the manner substantially as set forth.

 of potash, in any manner substantially as apecified.
['This is a useful improvement for ornamenting the sur. reserthe various articles mentioned. They are made process, and are then rendered water-proof by a cheap
chemical compound.] Preparing India Rubber cloth-Gulielmus b. Preparing IndiA RUBBER CLOTH-Gulielmus B.
Millerd, of Cochester. Conn. Ido not chaithe process
described of boiling caoutchouc in alkali,to desulphurize surface, nor the bumng or grinding ond of
duce roughnoss thereo.
Neither do 1 claim the attachment of a sheet of ca
 zation. $\begin{aligned} & \text { Eut I claim the application of a sheet of vulcanized } \\ & \text { caoutchouc, previously prepared by buffing its surtace }\end{aligned}$
bater or between two sheets of cloth previously prepared by
being thinly coated with an unvulcanizable solution of
 extensible a and elatstic, or in a f ree state to produce an
inelastic fabric, by simple pressurat and without the use
of ctment or subsequent vulcanization.
 or any other article substantially thesame, and the cords
or strings, ag ued in the manner described, by which the
requisite mechanical support may be obtained. Chars Pusps-Edmund Morris, of Burlington, N J.:
I clam the application of an elast tic fle xible tube, arranged as set forth, in combination with the box or cham.
ber in which it in enclosed for the purpose of retaining
water to assist in packing the pump, substantially as de.
scribed
 conting - yeelf to the use of water as the fuid to fill the
oxpanding hamber, as alcohol, air, or other fluids may
ox use to this I clad tor the arpurposese.
bent of the expanding chamber in
rela tion to the opening for ssam in the heatinn apart.
 the apartment, and remains in contact with the sanne
untithe whater in the boiler risesto the to or the open-
ing which admitted the steam when hep contact of the ing which admitted the steam when the contact of the
steam with the chamber i s suddenly cutoff, as described.
 the reception of the waving bsocks, each recess of one
side being opposite either a recoss, of the other side or
space between two recesses of the other side, essentially as explained

 for oars, and 1 am not aware that oars were ever sawed
out radially from a log which h th the only way to prevent
warping, and is a very important feature in their manu-
 the vertical and lateral adjustments arranged and com
tined as set forth, so that the log may be sawed r.dially bined as set forth, so that the log may be sawed r.dially
and tapering , thr the purpose of getting out oars there-
from, as specified.
 have boen previously used.
But t claim the arrangemen
 air from near the ceiling. where it is most impure in a building by a tube, and conducted into a heating chamber buted through the room. The objects contemplated by this improvement are good, and
ples in heating and ventilation.]
HAND STAsp-Perley A. Ramsay, of Boston, Mass, 1
do not claimstop, JJ, as a guide, for the putpos
ing arm, G, or confining it to a longitudinal motion, sev

 manner subsianialy as set rorth.
second, I claim the method described of hanging th
ink roll, for the purpose set forth.

 and

 roducing hin sam

 [This improvement in seed planters relates to the dis tributing device. which is operated by the attendant.
movable tube is fitted on one of the handles of the imple ment, and this tube is provided with an arm which oper
ates a lever connected with the distributing device. By this m eanar the operate the seed distributing device at pleasure. Th desired.]
 Harvesting Machines-Walter A. Wood, of Hoorick
Falls.
and

 position for the oterator, and when made
in tho manner and for the purposeset forth.

 vices tor operating the same indivivdaully, as these have
all been applied or analogous purposes.
But I claim the co

 and teth, U, when operated by the springs. D, or ortheir
equivalent, in combination with the forward end beam of She locomotive.
Second. Iclaim the stud. H, and joint. I. in combina.
tion with the bar, bhen whenstructed andoperated sub.
ontially in the manner and for the purposes described CUTTING Doverinls-E. G. Mathews, of Clear Wa
er, Minnesota Ter. asignor to Harvey
 In alovetailm tongue or groove. with compination wixed stock and
nitering and dovetailing cutters described, the traversing

N. Yo. Y. ${ }^{\text {Coning RaNery_Charles J. Shepard, of Brooklyn. }}$ Cooring Sroves-Jay. E. Stevenson, of Albany, N. Y.
 Note.-FIFTEEN of the Patents granted last week
and contained in the above list, were secured through and contained in the above list, were secu
the "Scientific American Patent Agency".

A large mansion at the corner of Bro street and Girard avenue, in Philadelphia, presents a great number of ornamental brackets made of ordinary plaster, which have now been in place for four severe winters without the least show of any injury. The brackets are placed under the projecting edge of the roof, and are each four feet long. They received four coats of Silver's Marine Paint, the last two of which were sanded. The house is exposed on all sides, and the result of this experiment, the first of the kind which has come to our knowledge-indicate that this cheap and fragile material may yet be quite extensively employed for such purposes. There are buildings in this city and Brooklyn presenting molded forms on their fronts, the material of which is principally plaster, and several patents have been taken for mixtures of the same with coal ashes, blood, and other combining mat

The Ice Crop.

The present winter has been cold throughout the South ; and as more or less ice has been secured in each locality, the demand from the North will probably be less than usual this summer. The ice stored by the ice companies here this winter has been about one half milion tons, which is more than ever before, and of a better quality than usual.

During the past year 23,730 flasks of quick silver were exported from San Francisco which, by Custom House valuation, were worth $\$ \leq 83,185$.

Repairing Old Plating Solutions.
Messrs. Editors-As I have experienced much annoyance, as an Electric Plater, from solutions becoming entirely useless after a few months' working of them, I have thought the following recipe would not be unacceptable to some of your readers, who may be engaged in that art. For a long period of time my only plan, when a solution became useless, was to evaporate it, and concentrate or decompose it with sulphuric or hydrochloric acid. This I found to be such a very troublesome and expensive method, to say nothing of inhaling the deadly gases, especially when hydrochloric acid was used, (which produced prussic acid in a pure state.) that I determined to adopt some other plan, if possible By a careful examination of different solu tions, when they had become inert, I became convinced their ineriness arose from a loss of cyanogen by evaporation, thus leaving a large amount of free carbonate of potash in the solution, which manifests itself by coating the positive plate with an insoluble crust, not only preventing the cyanogen still in solution from distilling the metal, but causing a grea resistance to the galvanic current
The plan which I have adopted with complete success, is as follows:-Take 1 lb . (Troy) prussiate of potash, and dissolve it in 5 lbs of water, and add 2 lbs. strong sulphuric acid place this compound in a glass, or, what is better, a lead retort over a slow fire, runing the tube of the retort in a slanting direction five or six inches into the metallic solu tion. In a few minutes the cyanogen will be gin to disengage, and it requires but thirty or forty minutes of rapid ebullition to obtai most of the cyanogen. The r stort should be provided with a safety tube at the top, hal filled with water, so that should a sudden condensation ensue in the retort, the air would rush in through the tube instead of the metalic solution being drawn up into the retort. The proportion here given will be found sut ficient to repair four or five gallons of solution, and put it in excellent order for re working. This method will be found espe cially valuable for the cyanides of copper brass, \&c., as the cyanogen is rapidly driven off by the heat necessary to work those solu tions.

Cincinnati, O., F'eb., 1857.
Liquid Quarti-Arilicial stone
Messrs. Editors-Your attention has re cently been particularly called to this subject and has necessarily led you to further investigation. In your last article upon "Liquid Quartz," you contended (very properly, too,) that the flint in solution should be in proportion of at least fifty per cent. to that of any alkaline solvent agent, used in dissolving it in water as a base for artificial stone and all like purposes-and that you hoped such a long-sought desideratum would ere long be achieved by some one.
To my knowledge, several scientific men are of the opinion that that is already found in the liquid quartz madeby Benjamin Hardinge Esq., of this city; the careful analysis made by them having shown the fact that the quartz in the liquid he makes is in far greater proportion than that you suggested. I am also to their satisfaction that Mr. Hardinge, by his apparatus, can manufacture it cheaply andin large quantities. J. Hotcrinson. No. 17 Broadway, New York.

Maelstrom.-The Great Whirlpool.
Messrs. Editors-I have been informed by a European acquaintance that the Maelstrom, that great whirlpool on the coast of Norway, laid down in all geographies, and of which we have heard such wonderful stories, has no existence. He told me that a nautical and scientific commission, composed of several gentlemen appointed by the King of Denmark, was sent to approach as near as possible to the edge of the whirlpool, sail around it, measure its circumference, observe its action, and make a report. They went out, and sailed all around and all over where the Maelstrom was said to be, but could not find it ; the sea was as smooth where the whirlpool ought to be as any other part of the German ocean
I have been instructed to believe that the

Maelstrom was a fixed fact in the ocean, that its eddy was several miles in diameter, and that ships, and even huge whales were sometimes diagged within its terrible liquid coils, nd buried forever "in ocean's awful depths."
Now, Messrs. Editors, I write to you for information on this point. Is the Maelstrom really blotted out of existance by this Danish Commission, or can I still fondly cherish ome terrible thoughts of its reality.
New York, 1857.
R. R.
[We have heard something respecting the Danish Whirlpool Commission going out and finding the Mc.elstrom nowhere, but we have not seen their report, and personally, we cannot give our correspondent positive information whether the Maelstrom is choked up or not. Some of our nautical correspondents may be able to

Colored Spool Cotton.

Messes. Editors-I wish to call the attention of manufacturers of colored spool cotton tothe wants of the public.
It is a notorious fact that colored spoo cotton is not so smooth and good as white, and that there are no gradations of size, al though much required, also no fast colors. Why cannot cotton thread be colored, so as not to fade, as well as cotton cloth? I suppose it would cost a little more; consequent ly the makers destroy their business by manufacturing an article entirely unfit for use. Silk thread has to be used, although much dearer, in a great many instances where cotton would be employed if it would not frde. There is a great and general complaint among the ladies and dress makers on this subject. Any manufacturer who would attend to this matter would insure a reputation and a handsome remuneration.
F. D.
[There are many common colors of spool otton which are more permanent than those of silk, such as green, blue, brown, orange, \&c. But black silk thread is more permanent in color than hlack cotton thread, and as this is the most common colored thread used, it is really the most important. Spool cotton can be dyed as permanent in color as cotton cloth, but to dye a fast black on cotton thread it will cost at least three times more than to dye black silk-weight for weight. The question to which our correspondent directs the attention of spool cotton manufacturers, is one of considerable interest, because they have much yet to learn in this branch of the cotton manufacture, and it is by such hints as the above that they are put in remembrance of their deficiencies.

Mineral Modx

Messrs. Evirons-As you have not stated the authority in your judicious article, page 65, Scientific American, present volume, on which the use of the "Mineral Rods" are still used in different parts of the country, will you be so kind as to allow me to do so? or more than thirty years I have had more or less experience in the occult sciences; and have experimented on the Nervous System, in connection with Electricity and Magnetism, perhaps as extensively as any other man in this country. And I take it upon myself to say that there is, indeed, and probably will be for some time to come, some good reasons for the use of the so-called "Divining," or "Mineral Rods." This authority is founded in that well-known quality of human nature, which you will find described in Webster's Dictionary, under the term gullibility. In this fruitful soil we have the best of reasons for a thousand things that pass under the name of tune Telling."
The celebrated David Davis, author of "The Manual of Magnetism," and formerly a popular magnetic instrument maker in this city some years ago, showed me a quantity of these Mineral Rods which he made to supply the demand of trade, and he assured me that the only authority for their use was, as I have stated-gullibility !
Hence, I conclude, Mr. Editor, that, as long as this quality of human nature remains, you will find people advocating the use of the mineral rods, and other practices similarly au
thorized.
L_{a} Roy Sunderland. Lhorized.
Boston, Feb. 9, 1857.

Reform in Weights and Measures,
Messrs. Editors-I am glad to find that you are in favor of reforming our system (if it can be called a system) of weights and measures. The evils of the present confused and contradictory arrangements are apparent at a glance. It is not only to business and scientific men that they are a nuisance, but our very school-boys feel it acutely. The committing to memory of the various tables of weights and measures is a considerable tax on the time and patience of the learner, which might be more advantageously employed in other studies. And it is the case that whatever the mass of the people have been habituated to in their youth, they think that to be right when they become men; and it does not enter their heads to inquire if this or that might not be amended.

I agree with you that it would not be well to introduce the French terms, but I think that our present terms should not be retained in case of a reformation. Making use of gill, pint, bushel, \&c., when they no longo: designated the same quantity as at present, would cause endless misunderstanding for a long time to come.

It seems to me that the present system might be advantageously replaced by something like the following:-lix on some specific length as the unit of lineal measure, if it should happen to be the aame as the unc now in use, let it keep its name (as a foot. for instance,) let its square be the unit of surface measure, and its cube the unit of solid measure. These several units of measure might be divided into smaller, or raised into higher denominations, decimaily, as often as might be deemed advisaiole. In the same way a unit of weight shou'd be fixed on, and subdivided or multiplied as required by public convenience. No doubt some mistakes would at first arise from the change, especially as our books are adapted to the existing regime, but where is the reform that does not carry with it some drawback. Our posterity at least would derive the full benefit of it. Thequestion ought to be agitated until we arrive at something better than our present methods.
E. M. Richards.

Lebanon, Pa., Féb. 2, 1857.
[The French nomenclatare is excessively long and disagreeable, but the quantities represented thereby may perhaps be as unobjectionable as any, and being already adopted as the universsi language for abstract scientific and experimental reports all over the world, are deserving of careful consideration. They are essentially as suggested by our correspondent. The Metreis a measure of length, equal to one forty-millionth of the earth's circumference measured over the poles (very nearly $39 \cdot 38091$ U. S. inches.) A Decimetre is one-tenth of a Metre. The Litre, a liquid and dry measure of capacity, is equal to one cubic Decimetre; and the square and solid measures are all based on equally simple relations to the original Metre. The Killogramme, the unit of weight, is equal to the weight of one cubic Decimeter of distilled water at the temperature of maximum density. All these are, in turn, sub-divided, and increased in ten-fold proportions, so that division and multiplication is easy, and if designated by simple short names, not liable to be confounded with each other, the system has many features to recommend it.

Great Patent Law Case Decided.

An important opinion of the United States Supreme Court was rendered at Washington on the 13th inst., deciding the invalidity of Horace H. Day's interest in the extended patent of E. M. Chaffee. This decision also settled another question which excited considerable interest among the lawyers in this city in 1854. This was an offer by Mr. Chas. O'Conor of $\$ 1,000$ to any person who would produce an authority for a certain ruling of Judge Betts, in the trial of Day vs. the New England Car Spring Company, described on page 69, vol. 10, Sci. Am. The decision of the Supreme Court, we understand, according to the information transmitted to this city, settles the question against the ruling of Judge Betts and in favor of Mr. O'Conor.
A pound of iron converted into fine spring steel will make 50,000 watch springs.

