pulley and belt, D. The rotary valve, E, can be worked by a pulley on the shaft, or worked independent of the pumps. This valve is of peculiar construction and is covered by a separate patent. It opens and closes communication alternately with the well and the atmosphere and the vessels, is and C. The pipe, F , on which this valve is placed leads into both vessels. By the action of the valve, then, a charge of compressed air is forced down upon the surface of the oil in the pipe or chamber, G; the result is, that the oil takes the course indicated by the arrows, and rises into the chamber, H ; by the continued actions of the rotatiug valve, E , the compressed air is exhausted immediately, so that the oil from below, at I, comes rushing up through the valve, J, to supply the vacuum, and thus raises the oil forced by the percussive action of the compressed air into the tank through the pipe, K. Of course the return of the oil is also prevented by the same valves. Where there is a sufficient amount or hight of oil or water in the well, only one receiver would be in use until the water was exhausted sufficiently to require the other; in such a case the pressure is relieved, by the valve only, to a sufficient amount to allow the chamber or vacuum to fill the pressure is counterbalanced, and the column of air ribrates back and forth.

For mines, or sluggish wells, or those rendered useless by the seams getting filled up, a chamber twenty or thirty feet, in a state of vacuum thirty or more times a minute, would draw in most everything but the rock F is a stop-cock, and when closed it fairly seals the well up, for nothing can raise the valve or get into the lower chamber. L is the ordivary seed bag by which the tube is packed. M is a jacket to be filled with water to keep the air pumps cool.
Two patents have already been granted on this invention through the Scientific American Patent Agency, dated as follows-March 21 and March 28, 1865. Another application is pending before the Patent Office. Patenis have also been secured through this Office in foreign countries. For further information address the patentee, F. S. Pease, Bufialo, N. Y.

POLYTECHNIC ASSOCIATION OF THE AMERICAN institute.

The Association held its regular weekly meeting at its room at the Cooper Institute, on Thursday evening May 17, 1865, the President, S. D. Tillman, Esq., in the chair.

THE GEOLOGY OF NEW YORE CLTY.
Dr. Stevens said that the Lyceum of Natural History had appointed a committee to examine the geology and mineralogy of Manhattan Island, and the geological examination was assigned to him. He then gave a detailed description of the appearance of the rocks as exhibited in the numerous excavations made in grading the streets, and stated the conclusion to which he had arrivel.
The lowest deposit was a mud rock which has since been metamorphosed by chemical action into gneiss -stratified granite. Over this was a deposit of limestone. After the rocks were hardened, by one of those slow changes in the crust of the earth which are constantly going on, there came a very gradual pressure from the east toward the west, forcing the edges of the rock toward each other and bending the strata into folds. There are five of these folds between the Hudson and East rivers.
Mr. Ely remarked that this island is very rich in curious minerals. He had quite a collection gathered here; among them one that was a perfect plum.
Dr. Stevens said that that was doubtless a fossil which had been brought in by glacial action from the rocks above Haverstraw. The rocks of the island contain no fossils.
the new three-cent coin.
Mr. Feuchtwanger presented for inspection one of the new three cent pieces, and stated that it was composed of 75 per cent copper and 25 per cent nickel, which makes a very hard alloy. It takes 254 of the pieces to weigh a pound, and they cost the Government just half a cent apiece.
solid floating on molten metal.
Dr. Parmelee observed that Mr. L. L. Smith was probably known to many persons present as a skillful electroplater of unusual scientific attainments.

Mr. Stewart:-He has made the finest electroplates ever made in the country.
Mr. Parmetce:-Yes. Well, Mr. Smith made an expcriment to ascertain whether solid zinc will float on melted zinc, and he found that it would not. The kettle of melted zinc was 20 inches wide, and 12 inches deep; the melted metal within 3 inches of the top. The solid pieces of zinc were 6 inches long, 4 inches wide and 1 incli thick, and they would inva riably sink.
Dr. Rowell:-If the solid zinc is of about the same temperature as the melted zinc it will always float; I have tried it twenty times. Perhaps Mr. Smith may have got a piece of metal cold enough to sink.
tunneling.
This being the regular subject of the evening, the President called on Mr. Stewart to open the discussion.
Mr. Stewart read a paper giving a description of a new tunneling machine iuvented by Major Plas. The machine is in the form of a car, with four radiating legs or arms by means of which it can be keyed firmly into the tunnel. A wheel, the diameter of which is nearly the same as that of the tunnel, carries several series of steel chisels disposed in concentric rings-these rings heing two or three feet apart. By means of an engiae driven by compressed air, the wheel is made to revolve slowly, the chiscls at the same time being drawn back by means of cams, and then driven violently forward by stiff springs, thus striking the rock with their sharpened ends a series of rapid blows. In this way narrow circular grooves are cut in the rock to the depth of some two feet, when the workmen withdraw the wheel that bears the chisels, and insert steel wedges in the grooves. Then a massive iron ram is driven forward by the engine with great force, driving the wedges into the grooves and breaking the rock into blocks which can be readily removed.
Mr. Montgomery, of Brooklyn, said that the most interesting question connected with tunneling, was the plan of the great tunnel which is to be constructed under Broadway. Several years ago he filed a caveat for a plan which he still thought the best of any yet suggested. It amounts to sinking the present street right down to a level with the cellar floors, and constructing an iron sireet at the level of the present one. The lower street is to be provided with a doulle track railroad, with cars to be drawn hy an endless wire rope, which will pass around immense drums at the two ends of the track, and be supported along the line by grooved wheels in the usual manner. The rope will have a constant motion, and the cars will be attached to it by an instrument something like the human hand, which can be opened to release its hold whenever it is desired to stop the cars. It can be demonstrated that the additional rent of the cellars for a single year will more than pay the whole expense of constructing this tunnel, that two cents fare from each passenger will yield a large interest on the stock, and that the speed may be three times greater than that of the present horse cars.
The subject of city trausportatirn was selected for the next evening.

RECENT ENGLISH PATENTS.

By late mails we have received our usual full supply of foreign journals; from some of them we make the following selections. Let no one pass them over as uninteresting, for riany valuable hints and suggestions can be found in this list:-
patent organ pipes.
In constructing organ pipes according to this invention they are composed of leau, or an alloy of it, and antimony, or other alloy of lead coated or plated with tin, or an alloy of tin, on one or both of its sides; this they do by making the pipes from sheets of metal made by coating a sheet of lead or alloy of lead on one or both of its sides with a sheet of tin or alloy of tin; or the plated sheets of metal from which the pipes are manufactured may be made by first coating an ingot of the alloy of lead with tin or alloy of tin, and rolling down such coated ingots into sheets of the required thickness for making into pipes.

patent dress fastenings.

These improvements relate to bucklea, clasps, hooks, and all kinds of fastenings generally, as also
to the methods of manufacturing and ornamenting such articles, and, consist, first, in a new method of manufacturing and uniting the tongues and frames of buckles by stamping in a die, and then uniting the parts by pressure without the aid of solder. Secondly, in an improved method of connecting the several parts of the buckles, hooks, or other articles by means of eyelets, which are formed of a single piece with the frame, and folded down or turned over to permit of the passage of the pin or rivets uniting the parts of the buckle. Thirdly, in a method of attaching or fixing a ribbon or waist belt to the buckle or clasp without sewing. This the inventor effects by cutting two slits in the frame of the buckle in which the ribbon is doubled over, in order to fix it in position. The connection of the parts is effected in this case in a similar manner to that above described. Fourthly, the ornamentation of the improved pins, buckles, and other articles, by means of rivets having facets, or otherwise ornamented, which he fixes in the article, and then rivets at back on a second plate of similar form, in which is made the eyelet forming the improved fastenings. Fifthly, the buckles may be further furnished with a plate in their interior, the edge of which is turned up in the form of a hook, whereby it may be connected to the frame of the buckle, which is similarly formed at one end; in this case the brickle is solid, and without any openings; the exterior surface may also be ornamented in any suital,le manner.
patent catch for ink bottles.
This invention consists in the use of an additional catch or fastener, so arranged and constructed as to lock with that on the ink-bottle or box, and thus pre vent its becoming accidentally opened. The usual aperture made for the reception of the hasp, such as is in use on the ink bottles at present manufactured, the inventor causes to be carried right through the lid of the box, and it is up and down this openingwhich is made smaller on the outside than the insideso as to retain the fastener in its proper position, that the improved system of catch is applied.

patent tootiled cianns.

According to this invention the sides of the chain are composed of as many links as required, and made of any desired ditch and strength. The distance between the inner links depends upon the thickness of the wheel, but over the pins which constitute the pitch and hold the links together he places hoops or ferrules, so litted that they can turn on the pins, but not shake, which hoops or ferrules, are intended to substitute the solid links or pins before in use.

patent flat chain.

This invention consists in forming flat chain either in bands for pit chains, driving bands for machinery, and other similar uses, or in sheets for armor plating, bridge building, and various other like purposes, by interlacing or screwing together separate lengths of coiled metal rods or wires. Each of these metal rods or wires is first formed i to an open twist or coil of any desirable length and thickness. Two of these coils are then screwed or interlaced together, coil within coil, and any additional number of coiled rods or wires is similarly interlaced until the length or area of the chain is formed.

Use of Waste Heat in Kilns.

Λ corressiondent of the London Builder, who ap pears to be a practical man, referring to the gases arising from Portland cement, says that while it is burning in the kilns a great heat is obtained by consuming the gases, and then passing the same under a drying floor. When alight, the gases are like a rolling sea of fire, and this will travel a great distance before it requires a chimney-shaft; that is to say, if the fiues are in a straight line, the heat from the gas will dry well for a distance of 120 ft . in length, and 60 ft . in width. The kilns he speaks of hold, when burnt, $\mathbf{1 5 0}$ casks. There is a greater improvement, however, which, our correspondent suggests, could be made; first, to let the heat work another set of flues while the men are taking off the stuff, and as soon as they have it off they could shut off another bay; or they might shut off nineteen flues out of twenty, and let the heat work up the one, which would be much better for men working on these hot flaes. Secondly, by having a coke oven beside the furnace the gas from this would pass through the coke

