This is one of Carbon.
This is one of the fifty-three simple substances known at present as constituting the materials of our globe. It has long been
known under a number of different forms, known under a number of different forms, such as coal, diamond, and plumbago. It exists both in the and inorganic organic kingdoms of nature, but it especially belongs to the latter, for the great coal deposits, which constitute its great store-houses, are undoubtedly of vegetable origin. It has been ranked by some writers as the base of organic nature.
The purest form of carbon, as ordinarily procured, is charcoal, which is developed b exposing animal or vegetable substances to heat, and excluding the air. The means commonly had recourse to for the preparation of charcoal are illustrative of a leading chemical quality of this bods-its complete fixity even at the highest temperature, provided the ac cession of air is prevented.
When prepared from wood of diff.rent spe cies, the resulting charcoal differs as to its density, its power of electrical conduction and certain other cbaracters; and on examin ing other forms oî black carbon, such as an thracite coal, coke, and plumbago, other point of difference are recognized. Common bituminous coal is not carbon, but an association of many comples unions of carbon and hydrogen, from which heat expels the volatile parts leaving coke behind, which is a mixture of carbon with small quantities of metallic oxyds.
Amongst the most interesting forms of black carbon is plumbago or black-lead-formerly considered to be a carburet of ironbut the best specimens of plumbago are free from iron. Lead is never present in plumbago, hence the appellation "black lead" is a misnomer.
The employment of plumbago in the manu facture of pencils is too well known to require comment. For this purpose the best quality of plumbago was the produce of Bor rowdale, in Cumberland, England, but this vein is now quite exhausted. Most of the or dinary pencils now used are manufactured from a factitious paste, made of powdered plumbago, antimony, and sulphur, fused to gether, cast into blocks, and these blocks sawn into bars of the required length and size. The great disadvantage of these pencils is their grittiness, aud the difficulty with which their marks are effaced by india rubber. The best of pencils are made by subjecting the powder of plumbago to extreme hydrostatic pressure simaltaneously with the abstraction of all remaining traces of air by means of the air-pump.
A material very much like plumbago in appearance, and which is formed, under cer tain circumstances, in gas retorts, is called plumbagine. Ivory and bone black are varieties of charcoal which result from the concentration of ivory and bones in retorts. They are employed for a variety of purposes. Ivory black forms a constituent of the finer kinds of printing-ink一that used for copper and steel plates. Bone black is chiefly used in the decoloration of raw sugar in the operation of refining. For this purpose the bone black is prepared in the state of grain, packed into large cylinders, and the colored sugar solution allowed to percolate through.
The most extraordinary and beautiful, a well as the most valuable form of carbon, is the diamond, a gem which has been known and valued on account of its resplendent beauty from the earliest ages.
Its composition is undoubtedly carbon, be cause the sole result of its combustion in oxygen is carbonic acid gas; but the origin of the diamond is a sabject of much curious speculation. As its structure is crystaline the diamond has been at some early period in a liquid or semi-liquid condition-a state which pre-supposes fusion by fire, or solution in some menstruum. Opposed to the firs hypothesis is the circumstance that within the structure of many diamonds are seen remains of organic beings-appearances scarcely consistent with the assumption that the diamond was once in a state of igneous liquidity. Sir David Brewster inclines to the opinion that the diamond is a drop of fossil ized gum.
The extreme beauty which this gem is ca-
pable of assuming can only be developed by a tedious process of cutting, unknown even to this day in its full perfection by Eastern na tions, and of somewhat modern introduction to Europe, viz., in the year 1456 by Louis Berghen, of Bruges, who accidentally discovered, that b_{J} rubbing two diamonds togetber a new face was produced. The diamond is so bard that it can only be abraded by portions of its own substance; bence, diamond powder is universally employed for that purpose; such stones as, on account of their inferior color or their flaws, are valueless as gems, being broken down into powder for the purpose of cutting others. At present, and diamond-cutting oreration are at Amsterdam Holland, where the operation is conducted by Jews exclusively.
The weight of diamonds is estimated in carats, 150 of which are equal to one ounce troy, or 480 grains. These carats are subdivided into halves, quarters, or carat grains, eightb, sixteenth, and thirty-second par:s. The rule for the estimation of the value of diamonds is peculiar, and supposing the gems under comparisen to be equal in quality, may be expressed as being in the ratio of the square of their respective weights. Thus, supposing three diamonds to exist, weighing, respectively, one, two, and three carats, their respect
values would be as one, four, and nine. alues would be as one, four, and nine
Farciers have not yet learned the value of charcoal as an agent in fertilization. In the form of a dust it absorbs and retains ammoniacal solutions; and on sandy and clayey oils is valuable for retaining carbonic acid which is posilively necessary to the growth of every plant. Charcoal ground into dust, and mixed with manure, or sown on sandy and clayey soils, has a most beneficial effect in promoting the growth of vegetables.

Crystalization.

We copy the following beautiful extract from an editorial in the Philadelphia Led-:-
Crystalization is found through all nature. There is not a substance, which, when allowed the free movement of its particles, does not exhibit a tendency. to crystalize. Water at a ow temperature crystalizes into ive. Metals slowly cooled after melting, crystalize. The gases, evanescent as they seem, may be made so artificially cold as to crystalize. Our children eat crystalized sugar under the name of rock-candy, and we ourselves use it in the oaf, crystalized in another form.
What is glass but a crystal? The sizes of crystals vary infinitely. There are crystals too small to be recognized except under a microscope ; and there is one at Milan weighing nearly nine hundred pounds. The White Mountains of New Hampshire are a vast aggregation of crystals. The Mammoth Cave in Keatucky is an enormous museum of crysals. As yet, however, with all our knowledge, we are comparatively ignorant of the aws of crystalization. Under them, we see atom arrange itself by atom in mystic, myriad forms; we discover also, that not only magnetism, but light and heat exercise an influnce in crystalization, but there our information substantially stops. The science of crystalization is almost a sealed book. lts mightiest curiosities still lie, like the virgin islands of the Pacific before the days of Cook, a waiting the skill and perseverance of some fortanate explorer."

Rovin 01.
The following, from the New Orleans Pic. ayune, affords evidence of the progress of the manufacture of rosin oil in New Orleans, and the use of rosin oil gas on plantations in ousiana : -

We some years ago announced the formation of a company in this city for the manof acture of oil from rosin, and now it affords is pleasure to be able to state that the undertaking has proved a complete success. The attempt to extract oil from such a substance was at first looked upon as simply ridiculous, for between rosin and oil there was nothing held to be in common. But there are more wonders between heaven and earth than ever was embraced in any man s philosopby; and e making of rosin oil is one of those recently
and patented by Mr. Robbins some four or five years ago, and has ever since been slowly though surely working its way into popular favor. Last spring a company, under the title of the 'New Orleans Manufacturing Company,' was formed in this city, with a capital of $\$ 100,000$; the patent right for th is State was obtained; a site was purchased on the road side of the new canal, and now the works have been completed and are capable of turning out over 500 gallons of crucie oil per dar. To make paint oil, or the best description of lubricating oil, the crude article has to be twice refined, and altogether about ten per cent. of the original substance is dissipated in gases. Of the remainder, every portion is greatly superior in value, bulk for bulk, than rosin, while the greater portion of the product is worth from fifty to seventy-five cents per gallon. The oils produced by the various processes made use of are gas oil, paint oil, lubric ating oil for machinery, tanners' oil, tallow oil for light-colored leather, bright varnish, napbtba, black varnisb, cart grease, and pitch. The various kinds of oil are classed according to the number of distillations which they have undergone, and the residuum is pitch.
The success of the experiment thus far bas been so satisfactory that the company bas already determined to increase their works by the addition of two more stills. No fewer than two bundred planters bave ordered sets of apparatus for the manufacture and use of rosin oil gas."

The Mrsmerism of Mschinery

A Birmingham (England.) paper describes the following remarkable case, which is stated to have taken place in one of the large iron manufactoriés in that place :-

One of the most singular instances in connection rith material things exists in the case of a young man, who, not very long ago visited one of our large iron manufactories. He stood opposite a large bammer, and watched with great interest it perfect, regular strokes. At first it was beating immense lumps of crimson metal into thick sheets, but the supply becoming exbausted, at length it only descended on the polished anvil. Still the young man gazed intently on its motion; then be followed its stroke with a corresponding motion of his bead; then his left arm moved to the same tune; and finally, he deliberately placed bis fist upon the anvil, and in an instant it was smitten to a jelly. The only explanation be could afford was, that he felt an impulse to do it, that he knew he should be disabled, that he saw all the consequenres in a misty kind of manner, but that he still felt the power within above sense and reason-a morbid impulse, in fact, to which he succumb ed, and by which he lost a good hand."
This story may be true; as wonderful events as this have occurred before. It certainly has a Baron Munchausen look about it, but we presume all have at times felt more or less of a similar temptation to thrust the hand into shears, gearing, or the like.

Loulswille Mechanics.

The best criterion by which to judge the intelligence of any people, is from the means they employ to acquire useful knowledge. There is no city in the Union that can claim a more intelligent class of mechanics than Louisville.
At the commencement of the present Volume of the Scientimic American, the enterprising publishers offered to the persons who should send them the twelye largest Clubs of subscribers by the 1st of January, 1857, one thousand dollarsin Cash Prizes. The last number of that paper that has reached us contains the commencement of the awards, and the mechanics of Louisville, through the agency of D. McPherson, Esg., stand at the head o the list, for the first and highest prize of $\$ 200$. This is the second time this honor has bee awarded to the mechanics of Louisville. First in 1855, and in 1856 they received the award for the second highest prize, and now again for the first. It affords us pleasure to make this announcement.-[Louisville Courier.
[Our cotemporary could not have paid a more just and merited compliment to the mechanics of Louisville, than it has done in the above paragraph. As we cannot have a better test of the character of a man than "the company he keeps," so the best criterion of
the intelligence of any class of men, is just the means they (mploy to acquire usefu knowledge ; and, in this respect. the citizens of Louisville may well feel proud of the r me-cbanics-they are not merely great readers, but good readers, and they bave earned for themselves a noble reputation for intelligen co and practical skill.

Genius under Dillcul ies.
The following case is one of such a rare and peculiar nature that we feel it our duty to present the correspondence, especially as the circumstances are therein explained in a very lucid and inter sting manner. We copy, verbatim et literatun :-

Look out for Mistakes.
Monn \& Co DeAR SIR your favour of the 17 tit inst At at one favour i will inform you of My lmprovemetnt And Should it be Au unjust one as it is frequently the Case iam willing to go with you 10 Case
New York and work for to New York and work for to pay your Expenc
for Coming here And furteri for Coming here And furluer i think i have as
good an imporement and Better for the Purpose Designed for Cheapness and Durability posd if you do Not want to go to the Expense of Coming here Please send the Money and and you will Not ke the loss of or Regret of
As iam No Seffisf kind of a Mlan the Reason i ask Luis Favour ibave been on on a Deep
Study for the Last 6 mo on different Plans Concerning the improvement to Find the Cheapest way of Putung the Mlachinery Where it is Designed 山y My Yocket Book beCame subject of the sweeny i will Come to a close by say My Pen is Bad My ink is Pal My upright and Contrite Leart to you Shall Never Fail
Yours Truly
G. W. L-

I think We Can Come to terms for i Like to Live While iam Alive and i Like to See othe ers Live to
yours truly
you Can find Me By Enquiring of David $\mathrm{F}^{\text {G }}$ Browns Coal works at Mlount Laffe David Lives in Market Street Mlost any Body Can
show you Where he Lives Whow you Where he Lives
Want of time and funds will, unfortanately prevent us from following up this promising case.

Grow:h of Coral Islandx
The reef building coraline will not operate n water of a mean winter temperature less than 68 deg.. which circumstance confines it principally to the torrid zone. It is for this reason that corals do not grow on the coast of South America. On our own coast they grow to a greater distance noith than elsewhere, owing to the presence of the Gulf stream. Their growth is also limited by the depth of water-ten or fifteen fathoms. Another condition is that the reef coral will not grow in fresh water, nor in turbid or muddy shores. Whenever rivers or muddy waters pour into the sea, there is a break in the coral reef. The washing of the waves is also necessary to its windm; consequently it will thrive on the ond ward side of an island when it will not sland leeward side. At first, when a cora
 owest order of vegetables, such as feed on air. These decay, and thus leave a little soil which by and by sustains a higher order of plants. These islands seldom rise more than ten or fifteen feet above the water, and are seldom more than half a mile broad. There is a vast area in the Pacifc 6000 miles long by 3000 wide, without any coral islands.

Riss and Fall of Water in Lake Erie. Ata recent meeting of the Cleveland (0.) Academy of Natural Sciences, Colonel Whittlesey exhibited tables and diagrams of the rise and fall of water in Lake Erie, from the year 1796 to 1852 , the maximum being in 1838, the minimum in 1819 and 1820 , the variation being 4.55 feet. Rain gauges were kept for various peri ods in different places in the lake region. He also stated that, by a long course of observation he had discovered the existence of a short pulsating wave in this chain of lakes, and entireiy independent of winds or currents. Its altitude does, in no case, exceed eighteen inches-more commonIy four or five. Its periods of vibration are short.
The sum of $\$ 5,060.000$ has been paid by

A P. W.. of Ill.-There are a number of plans for cut.
ting down standing eorn ; some of them have teen patting down standing eorn; som? of them have teen pat-
entecl. Yours is not new or patertable; you will have totry again. You evidently po-sess the qualifications of
a true inven:or: sou have constructiveness-that is a true inven:or: you have constructiveness-that is
shown in the sketch of your device ; you have beneroshown in the sketch of your device; you have benero-
lence-that is evinced ly the sending of your ink recipe lence-that is evinced ly the sending of your ink recipe
you are sansuine (the most important of all qualifications
for an inventor) -that is appurent from your remarks you are sanguine (the most impo
for an inventor) -that is app.
elative to the late elections.
elalive to the late elections.
A. L. B, of Vt.-We do not see that gour electric on gine has any adv. 1. tages over others that are well known. Uless you could show some peculiar superiority, we
thin's a patent could not be had. You would excite the
elec ricily hy a machine ; but more power could be rethin' a patent could not be had. You would excite the
elce ricily hy machine; but more power could be re-
quired to produce the current than sou could obtain quired to produce the cur
from the electric engine.
hard of any furcace feeder arranged to have seen or hard of any furtace feeder arranged like yours The
idea of m ming the saw dust to the proper points ly elevators, is not pate..tab.e. But other parts of your plane protajly, could bo secured. Your heory is good; practi.
cal exp.ximent alone can detormine the utility of the cal exp.ximent alone can determine the utility of the
dovice. valve when the water falls below a cert in line, are old Your plan is not pate.table.
E. O. A, of $\mathrm{Sa}_{2}-$ We find E. O. A, of Gas. We find nothing new in your breech.
1, ading cannon and prcjectiles. 1,ading cannon and prcjectiles. Making the cannon $\mathrm{sm} \cdot 1 \mathrm{ller}$ at the muzzle is old; making it in two parts, se.
cured together, is also old. Goodfe low's (English) pat. (nt , described in "Newton's London Journal," shows thls plan. 'I here is nothing new in your segment lever
\mathbf{P}. ojectiles, sutstantially similar to yours, have lo g been k zown. l'acking the projectiles, to prevent windaze. is
not new. $\$ 2$ received. th hory, but of $1: 0$ value 1 ractically; reither is it sub. Thary, but of 1:0 value Iractically; neither is it sub-
stantilly 1 .ow. You will find diagrams of paddle wheels whose Luckets are held perpendizularly for the same
purposes as yours, in Vol. 5, Sct. Am. Your arrangement purposes as yours, in Vol. 5, Sci. Am. Your arrangement
of parts is a little differ nt from any device of the kind of parts is a little differ nt from any device of the kind
that we rememler i but it i, not patentable.
E move such a lensthy column of water, no matter how the pipe? We regard your schc me for a Transatlantic Telegraph as impracticable. For short distancos perhaps it could be made available. Your instrument, if
new, is, atentable, But the idea of telegraphing by
means if a the filed with water is notnew. The sub. scriptions you speak of are all right.
T. D. J., of Mich.-Consult a doctor upon the medical properties of hemp, in diseases of the ear. Placed $u n d e r$ posts of society. Cane heads are much in vogue in thi pasts of sociely. Cane heads are much in vogue in thi
city, to deprive people of hearing and other senses, so that they can be conveniently robbed; but we never
heard of cane heads that were good ear-trumpets. Water co:ductors, of metal, for chimnies, are old, so are porta. b.e towers, ladders, fire escapes, \&c., drawn on wheels.
None of your devices are new or patentable. Try again. None of your devices are new or patentable. Try again.
G. L. W., of Md. -The Office do not regard drawings or models which are sent to flle as evidence, unless the whole conditions of the Ofice are complied with, i e.
specifications and drawings complete are filed, and the specifications and drawings complete are filed, and
Government fee paid. Our charges for reissues are the same as new cases.
can get volumes at $\$ 2.75$.
E. \mathbf{B}, of Wis.- - Soapstone is often used for stove pipes
to pass through, and the substitution of a hollow brick for that purpose, would not be patentable. N. S. P., of 111 - 11 o have not the engraving to which
you refer, in our possession, and if we had, we could not get up the circulara for you; we have no facillities for doing job work.
w. D., of N. Y.-Your plan for preventing gutters and leaders from freezing, is gcod and practicable; but it is
not patentable. Discharging the exhaust of engines into not patentable. Disc harging the exhaust of engines into
leaders for the same purpose has long been practiced. Preventing pipes from freezing by running a warm-water pipe alk ng side, is common.
E. W., Jr., of Cal,-There Engine, issued vely recenily
D. N. . of Vt-W D. N. F., of Vt. We perceive no spocial notelty in sour carriage seat; it would not be of sufficiont interost
to our readers to compensate for the room it would cupy in our columns.
J. G. Whi:e, Percy. Ga, wishes to correspond with a manufacturer of thimble skeins for wood axles.
G.D. L., of N. Y. It will te much easier for send us a description of your invention for oxam you to than for us to zend you a description of all the hose couplings with which we are conversant. We wish our cor. re pondents would always remember that it is easier for
us to determine the novelty of their inver ever it may be, than for usty of their them descriptions of all the machinesin existence of alike nature. W. H, of Mass.-There is nothing new or patentable in
your heater. Leating the air by pa-sing it throu;hchambers, surrounded by the products of combustion, is quite C. J. of N. Y.-Cooling Iiquids by forcing them through
pipes that are sutmerged in cold water, is very old. Your pipes that are sutmerged int cold water, is very old. Your
device is not tatentable.
N. R., of Pa.- Your plan of keeping rivers clear by N. R. of Pa.-Your plan of keeping rivers clear by
warming the bottom of the steamboat, and thus impartIng heatit to the stream, is certainly novel, and doubtless
patentable. Had Dr. Kane and other Arctic navigators been provided with your arrangement, it is probatle they never would have been stuck in the ice. Why did you not bring out your improvement earlier? On a small
body of stationary water it might operate; but in large
 rriages with fresh air, by means of a revolving fan, op-
orated by the wheel of the vehicl for the rising generation, but it is not patentable. H. P. J., of Mass.- Tour compound bombshell, or big
shell, containing a ot of little shells, is a very old de.
vice. It was invented several dozzn times during the vice. It was invented se
late seige of Sebastopol.
J. M. C.. of N. C.-If your plan for preventing back
lash, in gearing is new, it could be patented. Yes, it would lash, in gearing is neww it could be patented. Yes, it would
be better to join two ends of a rail on the same sill. It is a popular error that bodies heavier than water will sink until they reach a point where the liquid is sufficiently dense, and there remain.
F. G. A., of Ga We wo
F. G. A., of Ga.-We do not think of any particular
number of our paper in number of our paper in which engines and mills, simila
to those you speak of, are descrited. But we presume we have many times published accounts of machinery that would suit you. Read the Scr. Am. carefully, and
nodoubt you will soon find what you desire. $\$ 2$ received. Jour D., of Pa .-The great amount of space required for obj zection to its employment.
E. C., of Iowa.-T he water in a tube will expand just in proportion to the heat which it is submitted; the sam M.. of Me - - An arrangement somewhat similar to yours for straining saws, was illustrated in the last volume of
the Scientific American, paga 57 . It is the invention of Brown \& Coffin. They use air instead of steam. We not think your devico is patentable. \$1 received. J. L., of Va.-Your water wheel is not new in princ
ple. It is more expensive, and not so good for practic purposes as others which exhibit the same general plan
iz., buck viz., buckets that alternately slide through a cyllinder.
You will ind a number of such devices in the fifh vo ume of the Scientific American. Your invention would serve for a pump or rotary steam engine just as well as it
would for a water wheel. liut it is better in theory than in practice. It is not patentable, nor usefully practic a.
S. D., of O.-Cast.iron mantel pieces are enameled with a frit of ground glass and borax, put on wet, in the
form of a paste, allowed to partially dry in the air, and then fu:ed in an oven. Don't know the temperaturo of high temperature.
of sufficient strength.-Artifc:al lights hare beon made and daguerreotypes, but merely as abstract experiments purposes.
F. W. E. F. W. E., of N. Y.-We could give you opinions
about building a karn, according to our notions how a good and convenient one should be built, but not from
practical experience. I'robably you would find it prof able to steam jour hay for feeding milch cows, at lea Mr. m. G. See day
ice address wihout delay as wib to communicate with him.
D. E . W.
D. . Wears.. of Conn.-You can make aptid sell an article
two risk of som
that pericd
B. \& B., of N. C.-Mr. F. S. Pease, of Buffalo, N. Y of a suitable machine for mortising plow beams we don know. Address some of the manufacturers.
N. W. C., of N. Y. -Christopher Holling N. W. C., of N. Y.-Christopher Hollingsworth, th inventor of the knuckle joint washing machine was a
resident of Liberty. Ind, at the time his patent wa granted-1352. A' letter to that addeess might reach his S. is B., of Conn.- Your device for twisting twine is
old.

Money recelvod at the Scientific American Office iness for the week endin
 Miss., §60 ; A.E. W., of Iowa, \$25 ; I. H. C, of ill, \$110
 J., $\$ 30$; G. A. M., of N. Y., $\$ 33$; A. R. H., of Pa., $\$ 25$;
P. S. D.. of Me., $\$ 5 ;$ G. $\&$ F F., of N. Y.. $\$ 3$; E. F.,
Iowa $\$ 30$, J. B., of R. I., $\$ 30$; N B., of Ill. $\$ 30$, L. W, of L. I., $\$ 35$; N. N., ofPa $\$ 30$; F. W. W. of Texas. $\$ 25$
E. B. of N. Mass., $\$ 33$; G. W. F., of Pa., $\$ 53$; J. P. R. R., of Pa., $\$ 150$
E. F. F., of Vt.. $\$ 25$; J. M., of Ind., $\$ 50$; R.S. J., of Conn of N. Y., $\$ 15$; J. H. S., of N. Y., $\$ 27$; J. C., of L. I., $\$ 60$. Specifications and drawings belonging to parties with
the following intide Office during the week ending Saturday, Feb. 7, 1857:
T. P. J. F. R. of Iowa ; C. B. G., of Iowa; W. W.D., of N. I. S., of N. Y., G. W. F., of Pa. (2 cases) ; F.W.W
of Texas J.C. of L.I. of Texas ; J. C.of L. I.

important tiems.

10-Completx Sets of Volume Xil ExhatstedWa regret that we are no longer able to furnish com
plete sets of the present volume. All the back num plete sets of the present volume. All the back num
bers previous to January lst (No. 17) are entirely ex hausted.
ways ensers Sending Models to our address should alWays enclose the express receipt, showing that the
transit expenses have been prepaid. By observing this rule we are able, in a great majority of cases, to pre vent the collection of double charges. Express com-
panies, either through carelessness or design, of noglect to mark their paid packages, and thus, without the recelpt to conf ront them,they mulct their at oach end of the route. Look out for them

Terms of Advertising

Twenty.five cents a line each insertion. We respect
ully request that our patrons will make their ald disements as short as possible. Engravings cannot be ad mitted into the advertising columns. ${\underset{\sim}{10}}_{\text {ing. }}$

HERVA JONEG' Double or Single Hand Plant.
ing Machines.EFarmers and Dealers please send
tor a circular containing a full de. cription of these valua.

THE BEET PLANING, TOVGVENG, AND

WDELABLE INK WANTED-JOHN EWENNO

W Oninworth patent plawivg va:

 ${ }^{1322^{*}}$

(WMEs O. MORSE \& CO, 79 John stret., N

Forbea Bovi

Nopcrost botary playng Macimio

Diker Nivivitatiove Prevevien

