S
 cientific Ameriturn.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Scientific American, peblishbo wrexly
At 123 Fulton Streat, N. Y. (Suun Buildings.)
 Recent Foreion Inventions.
A New Cannor.-A patent has been obtained by Capt. T. A. Blakely, of the Royal Artillery, England, for making cannon as follows: He takes a tube of cast steel, and then surrounds this with external rings of wrought iron shrunk on. He also employs a buffer or spring of air at the butt of mortars to moderate their recoil. He also claims the method of strengthening old guns, by shrinking wrought iron bands on them.
Wooden Composition Pipes.-B. Blackburn, of Clapham Common, Eng., has obtained a patent for the following method of making pipes. He takes thin strips of wood, and bends them spirally and diagonally, and fills up the interstices with asphalt, or cement.
New Material for Paper.-Alex. Brown, of Tarbet, North Britain, has obtained a patent for the use of fern, or the bracken plant, in making fibrous materials to be used in the manufacture of paper. He has also produced a textile fabric from the bracken, (our common brake, and other plants of the cryptogamic series, and claims the manufacture of cloth from such. Our Patent Office has refused, in times gone past, patents for the application of a wellknown material to a new purpose, but it should be generous in such cases when the results produced are improvements.
Pickers of Power Looms.-Thos. Helliwell \& Joseph Barker, of York, Eng., manufacturers, have taken out a patent for preserving pickers and picker-sticks, and for preventing caps coming off the shuttle during the process of weaving. The invention consists in the use of a spring of steel or whale-bone fixed behind the back end of the shuttle-box, such spring being attached at one end to a raw hide, and it has a hole in the other end passing around the sirspindle of the shuttle-box. The raw hide forms a buffer bringing the shuttle gradually to a state of rest, and preventing it going too far into the box, and it also assists in returning it for the next shot.
An Improved Soap.-W. A. Armand, of London, has secured a patent for the following method of making a soap called " saponitoline," and which is stated to be of a superior quality. He places in a copper 88 gallons of soft water and mixes with it 112 lbs . of crystal soda, or 79 lbs . of salts of soda, and after two or three hours have clapsed, agitates it, and adds 112 lbs. of common soap. He then heats the
whole to 40° or 45° centrigrade, and adds 17 lbs. of pearlash, and 17 lbs . of quick lime. When ebullition has commenced in the copper he slowly agitates the heated mass, and pours into it about 5 gallons of mucilage of linseed or marshmallow seed, after which he adds 7 1-2
pounds of borax, or about $21-2$ pounds of calcined alum. When the whole is well mixed in the copper, and the liquid presents the appearance of being perfectly homogencous, he leaves it to boil on a slow fire for 3-4 of an hour. The fire is then extinguished, the copper covered over, and the temperature allowed to fall to 55° or 60°. He then pours the liquid into barrels, where it becomes solidified in about 24 hours, (supposing that hard soap has been used,) if otherwise, it remains in a gelatinous state.

CENTER VENT WHEEL WITH HYDROSTATIC CHAMBER.

The accompanying figure is an elevation of wheels, G G, at the foot. These parts are all Reuben Rich's patent Center Vent Wheel with plain, and will be readily understood. a cast iron scroll, to which is applied Winters' In this illustration it will be observed that Hydrostatic Chamber. This view represents the wheel discharges its water at the top only, a wheel in successful operation at the cotton its bottom being a solid plate. Between the mills of the Tallassee Manufacturing Co, at Tallassce, Ala. A "Prony Brake" for ascertaining the power of the wheel, is also represented.
A is the shaft of the wheel, W. R R are adjustable rings in which the wheel revolves. C is the hydrostatic chamber. O is the step ad support of the wheel. $S S$ is the section of the cast iron scroll. F is the fore-bay or water flume. P is a discharge pipe, having a
stop cock, I, for regulating the upward pressure on the disk of the wheel from the hydrostatic chamber, C D is the Prony's friction brake or dynamometer. N N are weights suspended on it, and B is a bell to announce the number of revolutions performed by the wheel, t being struck with a hammer operated by a cam, as shown. L is the lever of the dynamometer, and M the weights on the scale. G, at
the top, is a wheel lever on a shaft, to open and the top, is a wheel lever on a shaft, to open and
close the gate of the wheel by the pinions and
three twenty-fifths of the water flowing into chamber C , is allowed to escape by pipe P , and thus twenty-two twenty-fifths of the waste water is saved, by this useful method of applying it.
This hydrostatic chamber, C , is made of iron, but it might be formed in a rocky foundation, excavated in a proper situation for the purpose. Various devices may be employed for the escape of water from the hydrostatic chamber. A wheel put up for the Cartright Manufacturing Co., at Cartright, Ga., has inch holes bored through its disk (the number of such corresponding to the quantity of water,) for the escape of water from the hydrostatic chamber.
In experiments made with this wheel, to test its power, by a Prony brake, we are informed by the inventor that the increased useful effect of the Hydrostatic Chamber amounted to ten per cent. The same principle is alike applicable to the double as the single wheel, and to all water wheels running on vertical shafts, or carrying round a weight of water as they revolve. The invention can be applied by a small elevated tube of water to relieve the friction and pressure on any revolving vertical shaft of an engine or machine, which carries a great weight of machinery. The same principle can be applied to wheels that discharge below instead of above, but that method is not shown in the figure; the inventor, however, will explain the plan of doing this to those who apply to him.
It is evident that the Hydrostatic Chamber is a very useful improvement, that it nearly annihilates all the friction incident to the weight of the wheel, and its shafting on step O. Devices heretofore applied to relieve the friction on heavy vertical shafts, have rather aimed at disseminating than reduciug the friction, so as to reduce or equalize the wear of the rubbing surfaces. The improvement is an exceedingly simple one,-its qualities and merits are apparent at a glance. This Hydrostatic Chamber, on Reuben Rich's wheels, is employed by the Cartright Manufacturing Co., Ga., and Tallasse Manufacturing Co., Ala. Daniel Keith, Esq., is Superintendent of the former, and Z. Philips, Esq., of the latter-who can be referred to for opinions respecting its value.
The inventor of the Hydrostatic Chamber is J. S. Winter, Esq., who has applied for a patent, and from whom more information respecting its use and application may be obtained by letter addressed to him ãt his residence, Montgomery, Ala.

American Ship-Buildiag.

During last winter and spring the docks of New York were crowded with ships for which no cargoes could be obtained, and, as a consequence, ship-building was almost suspended in all our dock yards. Things have taken an entire change within the past two months. Freights are now very high-a sure sign of abundant employment to our shipping-and in all the ship yards the sounds of hammer, mal. let, and adze ring merrily from morning till night. There has been a partial failure of the crops in 'France and England during the present season, while there never was such a great surplus raised in our country. We are therefore able to supply the foreign demand, and this calls into activity the immense amount of capital invested in our commercial navy, which is stated to be larger now than that of any other country. \qquad
The Camden and Amboy Railroad Company, N. J., on whose road so many lives were lately lost by accident, have attached to some of their engines small whistles connected with exhaust pipes, through which the waste steam issues, making a continual succession of short shrill sounds, audible to a considerable dis$t^{\text {ance. }}$

Scientific Amarican.

[We have in preparation an engraving illustrative o lished.]

 show wand and
tion the an
tionf.
[This amal gamator consists of one or mote pairs of me.
tallic rollers geared tosether and revolving ina trough in tallic rollers geared together and revolving in a trough in
contact with mercury. The journals of the rollers are hollow, and so are perf
 out ward discharge of water on the
Leeeping them continually moist.
1reeping them continually moist.
The quartz previously pulverized and mixed with wa
 rollers coat the msel yes, axt they revolve, with mercury, aut the laterer nisorbs the eold dust from the paste. The i, wsuing
water from the rollers loosens the quartzax tist as it forms water from the rollers loovens the quartz axtist asit forms
upon their surfaces, an dulee 60 Hi, being heavistst, falls to
 dust, and the rollers come round with a fresh coating of
mercury at every turn. This $i \mathrm{a}$ sinalle and apparently mercury at every turn. Thisisa asingle and apparently
effective and economical amilgamator.1

 hif presswe ot the team.

[The appratas which forms the subbect of this invel:
tion coni,t, of a portable stcam eu.gine, earrying one or tion con, ints of a portable stcam e.igine, carrying one or
more auser totncks, either attached or geared with it main haft. The cylinder of the e trine receives steam from a boier through a flexible pipe, which allows it 10
ba carried about in the hands, ind operated in differen places at pleasure. Thie enine is also provided with a
cuinus arranument of slidiny
gives whoreby nearly the curious arrangment of siliding ripes. whoreby nearly the
whole weightof the ococern is supported by the pressure o
 the enzine. II desirable, steam rany be introducod. io
cauve the necessary pressure upon the tonl. This is a singular improvement, appiciable, we are told, with much ane of bring are o be done. Fixperience provee
amounts
that stam may he conveyed with perfect facility in flex. that stam may he convoyed with perfect faciility in flex.
ible pipes, for short distances around a otationary boiler.]
[Reported ©ficially for the Scientific American.] LST OF PATENT CLAIM lesued from the United States Patent owice
for the week ending oct. 9, 1855.

 me line
fThe foregoing invention consists, first, in an im proved
fied motion. Second, in the employnnent of a weighted trii lever, instead of spring pressure in feeding the cloth
Th rd in an oblique arrangement of the shuttle r. $\mathrm{race} r$ latiig g the line of the feeding movement, or of the sew.
i.1., wherevy the stitches firmed by the needle and shut.

 Siisth, in a novel devicic for the purpose of holding the
thread and keeping it extended in a straight line from thread, and keeping it extended in a straight line
the cloth to some distance above the needle during the descent of the neade, until the eye thereot passes throug
the cloth, for the purpose of preventung the kinking of the thread around the needle as it enters the cloth-
Seventh, in an improvement in the shutle whereby a cop is there in successffuly used.
We should need several diagra
cle arly the vaious improvement onter inustrat They are all intended to rendere the common shuttle sew
ing machine more convenient of manazement, and mor perfect in its operation than it has heretotore been. So
far is we can judge, Mr. Cowperthwaite's efforts have been crowned with much succeas. Nothing can excee
the exactness and unitrmty of the work which ho prom
 of value and importance.]

 the charn, substantially as set torth.

 [The above is an improvement on the oldest of all the
corn shenerer- that in wwich a bevel toothed shelling wheel isemplo yed, having a yieldins movement on it it
Uearingt, or a s spring,to accommodate different sized cob bid
 the recention or hec orn. When a smal ear is rut
followed iumediately by a larzer one the latter is apt

 sheller, each opening furnithed with a sprit.g back, which
presese itse $\mathrm{a} r$
up apalinst the shelling wheel. This ena

 (In church, and d ther or anans, the h hroats or lower partsof the music pipes, rest on a box called an air chest, into which the air from the bellows first flows. Holes are mad To recive wind. chest and into them the pipes are place
to teach pipe is set or tuned by
altering the size d its th throat. altering the size d its throat. If the sound is too low, the
throan is jammed together alittle, with a hammer: if to shrill, it is enlarged with a mandrel. Mr. Genrge
invention consists in simply placing a common stop-cock in the throat of each tube-an improvement which per
mits he tuning of the pipes with the utmost convenience and perfe
before.]

 Appivivg Fire

 many pointsof inc
operaton sef torth.

 [Mr. Singer is the in ventor and patentee of many hith
[y ingenious and successful improvements in cloth-sew ing machinery. But the inventions above patented, strik us as firming a crowning triumph. They consist in a new plan of stitching, and in a novel method of em broidery,
whereby ornamental designs, of every description, can be Wrought out on the cloth in the most splendid manne
with great precision and rapidity. We have seen some el gent specimens. Thread, silk. worsted, gold lace, and
other species of embrodering stuffs, varied in colors to suit the taste, mas be laid on with singular e ase and tacil-
ity. The work performed is, moreover, very firm and dur ity. The work perfor med is, moreover, very firm and dur-
able. The field of employment for inventions of this kind is a very large one. But the extensive resources and well
cnown energy of Messrs. Singer \& C_{0}, leave no room to doubt that it will soon be well supplied.]

 annowhere.
[Muxic by steam is no ionger a myth; it is, at last, a paented reality. Λ daring inventor has seized the steam
whistle ly the throat, opened its mouth, and thrust down vocal organs wholly new. Its horrid screech is turned into a voice of melody, powerf ul, but pleasing. Slumber.
villazers will no longer complain of broken rext. 'The in; villazers will no longer complain of broken rest. 'The
mid night locomotive, rushing with lightning wing, will henceforth bear along sweet sounds instead of discord.
The Sunday mail train, ceasing to shock with its piercing din, the moral sense of whole communities, will lead them in vast choruses of hymns and psalms.
In plain matter.of-fict terins, this steam musician con-
sist of a number of steam whistles of proper relative size
 a nner,and provided wins of receive steam or air from any suitahle pipe, chamber. or generator. The said valves are opened for the stram or air to escape to the whistles.
hy finger lieys or hy the revolution of a studded bartel or by any other suitable mechanical means. The important fenture of this instrument is the pecu
employed for the escape of the steam]
 pme have been used for ment and a variety of other
Bunt
But laim the method described and shown, of catch.

 tee but I caim the combination of the spring and slide
tith the clas, as set forth.

[The abore gauging contrivance is intended 'or use in
connection with circular saws, its object being to facilitate the cutting of exact bevels and angles. A gauging
apparatus of nearly the ordinary construction issecured to the sawing table in the common manner. The improve.
 ment consists in combining herewinan adational gaue
bar, shaped somewhat like the oflowing [. This bar is pivoted, and its arms pass hrough slots in the other gauge
apparatus. If one of the arms of the improved bar is pressed in, by the stuf to be sawn the other arn will be
conequintly throwil forward and the two will form the desired bevel gauge. This is a very simple, cheap, and seful invention.]

 Twelf th. the eneral a arrayement and combination of
ten er fral working parts of the machine, substantinlly as [The forergoing claims explain, as clearly as it can hes
dono without ensravinst, the natury and operation of the invention to which they relate. Mespurpose is to take the
blank envelopes or lozenge, as they aro tec hnically called, fold and stick them, stamp theie tlaps with an or
 operations, and the rapid movemen of many different parts. Sven when made by hand, it requires a reat deal
of fingering. The eetimated annual consumption of en.
 business. Girly are generally employed to do the folding. who are paid accordingt to the num ter of en velopes pro-
duced. The rapidity and expertness which they acquire duced. The rapidity and expertneses which they acquire
in the operation is realit surprising. A Amart tirl, ws
hare boentold con fold sell per diem.
diand, can told betwen four and five thousand Yeary to perform all the laboro of envelope making by ma.
chinery. There are some suce their advantaze over hand labor is not very strnking, as they requre considerable superintendence, and only turn
out bet ween fif teen and wenty hounand envelopes a dow Mr. Goodale claims to have realized some important im. provements, and thinkt that the above invention will al
together outrurip in mpetad and quaility of works, any of the
best machines in use

Scriontific Amrericam.

[For the Scientific American.]
 Machine for IPeeling Willows

I have taken much pleasure in the perusal of your valuable paper from time to time, and have been in the habit of looking to your columns for any new and useful invention, as I see you take much interest in any new thing that promises to be of value to the world. But there is a new thing which I believe has not yet appeared in your columns, viz., a machine for peeling basket willows.
The cultivation of willows is a subject which has excited a good deal of attention in this country for a number of years, and many farmers have tried it on a small scale, and found it very profitable; but owing to the grea amount or labor required at one time to pee there could be but very few raised in thiscounthere could be but very few raised in this coun-
try, where labor is so scarce and high, without there could be a power machine for peeling them.
Herewas a fair field for "Yankee ingenuity," and in this instance said ingenuity has accomplished its abject in a most perfect manne Mr. Geo. J. Colby, a young man in this village is the inventor. He commenced the cultivation of willows some three years ago, and last win ter he got up this machine for peeling them by horse power, and it works beautifully. I had often heard of the machine, but had my doubts of its being very valuable, for I imagined that a machine that would adapt itself to the dif ferent sized willows and effectually remove the bark from the large and small ones, and no
injure the rod, must be a complicated affair But I have lately witnessed a trial of it and have become satisfied that it is a valuable in vention. Its operation is very simple, the wil-
three sets of India rubber rollers, one set of to be carefully picked over, the casks made which have a vibrating motion which rubs the bark off very effectually; the others mainly separating the willows from the loose bark The rollers being made of india rubber, there is no possible chancefor the willows to be injured, and it will adapt itself to all sizes, so that from twenty to thirty rods can be passing through a the same time.
With one horse, and two men to attend it, will peel from one to two tuns per day, while to do the same amount of work by hand it would require 30 or 40 men and boys. In short I think this is one of the greatest labor saving machines of the age, and if farmers only understood it they would soon plant willows enough, so that we should not be obliged to send to Europe for them as we now do.
Mr. Colby has published a circular giving directions for cultivating the European willow and preparing it for market, which he offers to send free to any one wishing to engage in the business, which, from his account of it, and from what I have learned from other sources, I think is the most profitable business that farmers can engage in when they havesuitable land for this purpose.
Jonesville, Vt.

$$
\begin{aligned}
& \text { [For the Scientific American.] } \\
& \text { On Preervina Frult. }
\end{aligned}
$$

The following article on the subject of preserving apples, pears, grapes, \&c., has been prepared by Mr. Parker, the patentee of the Fruit Preservatory, illustrated on page $3: 56$, Vol. 10, Scientific American. The information contained in it is collated and condensed from the Penny, Rural, and London's Cyclopedias ; from Downing, Barry, Prof. Dubrill, of Paris, Liebig's Organic Chemistry, \&c. All the sources of information on the subject up to the present date have been examined, and to these the author, who is an extensive truit dealer of many years standing, adds his own perience and practical knowledge.-[Ed.
Gathering Fruit-No precise time can be specified when it should be plucked; those kinds that ripen or mature early, should be gathered before they are quite ripe. Slight frosts will assist many valuable kinds of winter pears and apples in collecting all they can of grape sugar, which not only improves the flavor, but is the most important element for preservation. Fruit should be gathered when the trees and fruit are perfectly dry (this rule holds good for all kinds.) The best time, as a general rule, is when the fruit stalk separates easily from the spur. Apples and pears for preserving should have their stalks separated from the tree, but never from themselves. This should be done carefully by the hand, catching the stalk so that the bloom will not be disturbed. Such fruit as are the least defective or bruised when gathering should be rejected. Improved fruit ladders, and baskets two feet long, eighteen inches wide, not more than twelve deep, with carpet inside, will be found useful, so that the fruit may not receive the slightest bruise till placed in the Preservatory, or packed in good oak barrels so that they shall not shake inside while being conveyed. In the Preservatory they should not be laid more than four tiers deep; this should be done before the fruit is the least moist; a few hours with the slightest change of temperature will cause this. Some are of the opinion that fruit should be placed in heaps and covered with straw orflannel till they perspire thoroughly, say for three weeks, then opened when the air is dry, so tha the evaporation may be removed. Any that remains on the fruit is wiped off with flannel before they are put away in the fruit room or in barrels.
I object to this mode of sweating; it not only spoils the flavor, but the wiping removes the bloom-that which nature supplies for protection from dampshould not be foolishly taken off. If we would study nature, and patronize and read good periodicals, we would know and practice better methods. "Prove all things." Apples and pears have been deposited for winter use in the following methods: First,in single layers on the bare shelves of a fruit room; econd, in the same manncr, but covered with light canvas, which must be dried occasionally, as it absorbs the moisture. Third, in drawers, one layer or several layers in depth. Fourth, In oak casks without any interposing material
perfectly dry, and re-filled, the heads closely fitted, and the fruit on no account disturbed till unpacked for use. Fifth, in boxes, casks, large garden pots or jars, with pure and dry sand interposed between the layers of fruit Sixth, in jars in which no sand or other substance is allowed to come in contact with the fruit, the mouths of the jar being covere with a piece of slate, and the whole plunged iuto a quantity of dry sand, several inches from the free atmosphere. The sand being a slow conductor of caloric, the sudden changes of temperature, and their powerful effects in caus ing the decay of fruits is avoided. Seventh in heaps in a dry airy loft, a slight covering of straw being given to prevent the frost from in juring the fruit. Eighth, in close cellars ex cluded from the light which is in all cases in jurious. Nimth, in dark but airy vaults. Tenth on a small scale under a bell glass, cemented down air tight, this must be done on wood free from resin, else it will communicate its flavor to the fruit by the confined and accumulating exhalation. Eleventh, buried in a box placed on four bricks, under another box inverted, in an excavation so deep that the upper portion of the fruit may be $11-2$ or 2 feet below the surface of the earth. Twelfth, in thrashed grain or straw, with or without a covering of the same. Thirteenth, in chaff of wheat o oats. Fourteenth, in flaxseed chaff. Fifteenth in powdered charcoal; this, if it cannot pre vent, will in no degree contribute to decay, in ternally or externally. In this substance the Newtown Pippins sent to England are frequently packed; were it not for the bruises they re ceive before they are put aboard, they would arrive in better condition. Sixteenth, in dried fern leaves packed in baskets. To keep pre served fruits, glass jars, or salt glazed earthen ware are considered better than tin cans. The acids of the fruit act on the solder, producing sugar of lead. Much has been said and written respecting how preserved fruit should be cooked, what proportion of sugar used, the method of expelling the air, then sealing th cans so that they may be kept from atmospher ic influence. The best mode consists substan tially in expelling the airf rom the jars by plac ing them in hot water so long till the fixed air is dislodged then hermetically sealing them. In all this there are so many minute particu lars to beattended to, not only the right time when, but the proper manner. If these ar neglected or improperly done, the fruit will be worthless-experience is indispensible.
To construct a fruit room, choose a dry soil, somewhat elevated, facing the north, and completely shaded from the sun by high plantations of evergreen trees. The dimensions of it must be determined by the quantity of fruit to be preserved: this fruitroom is inclosed by two walls, leaving between them an open space about ten inches wide. This stratum of air interposed between the two walls is the surest means af protecting the interior from the ex terior temperature. In sunken fruit rooms some are so constructed that natural currents of dry air are made to pass through them; some use a stove, the air from which is intended to take off the damp which may accumulate. A subterranean cave or grotto in a rock, if perfectly Lound make a good fruit room.
Loudon, page 2308, affirms that he kept apples at a temperature from 32 to 42 degs. for a whole year; their flavor was good, and they were in perfect order for eating. He does not say how so low a temperature was attained M. Paquet, of Paris, received from the Royal Society of Horticulture a medal when he pre sented, on 12 th June, 100 apples and pears fresh and of good flavor. The building used by him consisted of an inner and onter house this depository of the fruit was kept at a temperature of 50 degs. Fah.,-as low as 39 degs would not be injurious; but 66 to 73 degree proved destructive. He employed eight parts of sawdust-not pine-and one of charcoal highly dried in an oven, interspersed with the fruit, and kept in drawers several layers in depth. He says fruit should be gathered with the greatest care, and not in the least bruised, he fairest and finest specimens selected, and deposited in the fruit room
[The remainder of this article will be give next week.]

Heturn of the Kane Arctic Expeditions.
On the 31st of May, 1853, Dr. Kane left this port, with seventeen bold companions, in the brig Advance, on his second Arctic Expedition in search of the unfortunate Sir John Franklin For nearly two years no intelligence had been received from the party, and the fear be came general that the vessel was destroyed, and that this Exploring band were perhaps cooped up in some Arctic wild, suffering for the means of escape. An expedition consist ing of two vessels, named the Rescue and the Arctic-the latter a small propeller-was there ore fitted out to go in search of Dr. Kane, and left New York on the 4th of last June. No news having been heard of it for some time our citizens were electrified on the evening of the 11th inst. with the thrilling intelligence of he arrival here of Dr. Kane, and his party, and the whole Expedition that went in search of him. Their arrival produced a universal feelng of delight among ali our citizens.
Dr. Kane has discovered a new northern land, which he named "Washington," and new channel which he named "Kennedy," also an open polar sea, and some other interest ng geographical discoveries. The Advanc became frozen in a pack of ice, in September 18.53, and had, finally, to be abandoned. The party made many expeditions from it on the ce, and at last effected their escape to Greenand, with Francis' metallic lifeboats and sledges, from which place they took their passage to England in a Danish ship, but were so fortunate as to meet with the American Res cuing Expedition sent in search of them at Discoe Island. With grateful hearts, they im mediately embarked, and sailed for home on the 10th of August last, and here they have ar rived, having lost but three of their crew during the two years and four months cruise amid dangers of a most appalling nature, and ufferings almost unparalleled. All had the scurvy at one time except Dr. Kane and Mr. Bonsall, the daguerreotypist. The cold was 50 degs. below zero for months-last winter being very severe. Dr. Kane states that Gail Borden's Meat Biscuit, with which the Expedition was well supplied, "was an excellent article, much used by them all."
We feel thankful and overjoyed at the safe and fortunate return of both Expeditions. The great discovery of Dr. Kane is an open Pola Sea, into which there is an open channel. He predicted the existence of such a sea before he tarted, and like Columbus, he has been fortunate in realizing one object of his expecta ions. We hope, however, that no more Arctic expeditions will be fitted out, forthis very open Polar Sea found by him, may be entirely closed next season.
The hazard of such undertakings overleap entirely all the practical advantages that accrue from them. Men may perform bold and praiseworthy acts to rescue the unfortunate; but with the sad fate of Sir John Franklin's Expedition and the bitter experience of Dr. Kane's search for him, we hope to find no one sufficiently foolhardy to again undertake the navigation of this dangerous and unhospitable Northern Ocean.
For all the purposes of commerce, the North west passage is entirely sealed, and must al ways remain so, until the nature of things is reversed by the Great Architect. Then why persist in impossibilities?
In connection with this gratifying announcement of Dr. Kane's return we will make a dash at that superlative humbug of the 19th century called "Spiritualism." On page 363, Vol. 10 we published the lugubrations of a Baltimore correspondent, in which he says: "Dr. Kane has lost about thirty of his men, and is at present near Sir John Franklin. He will soon meet him, and return with him to New Yorka triumph and pride to every truly American heart," and so on. The facts connected with Dr Kane's Expedition and return, and the prognos ications embodied in our correspondent's let er are strikingly at variance; and go to show the fallacy and deception that will work upon human understanding. Our readers will be amused by referring again to the article from which the above extract is made.
Dr.Kane was officially received by President Pierce on the 15 th inst, The interview was \mid very cordial.

