Science ant Aht.

The Effect of Color upon Health.

 From several years' observations in rooms of various sizes used as manufacturing roons, and occupied by females for twelve hours per day, I found that the workers who occupied those rooms which had large windows with large panes of glass in the four sides of the room, so that the sun's rays penetrated through the room during the whole day, were much more healthy than the workers who occupied rooms lighted from one side only, or rooms lighted through very small panes of glass. I observed another very singular fact, viz., that the workers who occupied one room were very cheerful and healthy, while the occupiers of another similar room, who were employed on the same kind of work, were all inclined to melancholy, and complained of pain in the forehead and eyes, and were often ill and unable to work. Upon examining the rooms in question, I found they were both equally well ventilated and lighted. I could not discover anything about the drainage of the premises that could affect the one room more than the other; but I observed that the room occupied by the cheerful workers was wholly whitewashed, and the room occupied by the melancholy workers was colored with yellow ocher. I had the yellow ocher washed off, and the walls and ceilings whitewashed. The workers ever after felt more cheerful and healthy. After making this discovery, I extended my observations to a number of smaller rooms and garrets, and found, without exception, that the occupiers of the white rooms were much more healthy than the occupiers of the yellow or buff-colored rooms; and wherever 1 succeeded in inducing the occupiers of the yellow rooms to change the color for whitewash, I always found a corresponding improvement in the health and spirits of the occupiers.[The above is from a correspondent of the London Builder, and is very important information. We are framed with natures whict are influenced by color; but the manner we are influenced is not yet sufficiently understood. Cherrieul has investigated the laws of color relating to contrast, so as to arrange different colors in a correct manner to produce the most pleasing effect upon the vision ; but we know very little of the laws relating to health and color. These laws can only be discovered by observation and experiment. We hope this subject will meet with more general attention and further investigation.

Wonderful Fountains.

The fountains of the Crystal Palace at Sydenham, Eng., are among the greatest wonders of the world. 'Two huge fountains throw vast jets of water to a hight of 280 feet. Two towers are erected on the highest part of the grounds, each 270 feet high ; powerful engines take water from artesian wells 575 feet deep, and throw it to the top of these towers, whence it iescends and feeds the fountains. The total weight of each tower, when the fountains are playing, is over three thousand tuns.
Besides the two colossal fountains, there are ten lesser ones, that throw jets one hundred feet high, as well as almost countless smaller fountains, in addition to water-temples, cascades, \&c., and several thousand small jets, requiring 120,000 gallons of water per minute to supply them. Ten miles of iron pipes are required to conduct the water that teeds these works. The sight, when they are all in full play, is said to be magnificent. The spectator sees before him a group of basins, arranged or terraces that rise above each other, the Grystal Palace building crowning the summit; and each of these basins seems alive with jets flashing in the sunshine, and crossing and recrossing each other, while cascades diversify the scene, and the two colossal fountains shoot to a dizzy hight.

It is said that there is not an ounce of that famous perfume, pure otto of roses, sold in our country. It is adulterated before it is sent from Egypt-the country which furnishes the almost entire supply.

Growth of Mineral Earths.

E. Merriam states that the floor of the Mammoth Cave in Kentucky is covered by three or four feet of dirt, yielding about three pounds of nitrate of lime to the bushel; and such is the condition of the atmosphere of the cave that the dirt, after being lixivated and thrown back from the hoppers in the cave, re-impregnates as fully in three years as it was before lixiviation. Thus the supply is inexhaustible. Glauber and epsom salts are abundant in some distant apartments of
the cave. Pebbles; chalcedony, including in existence; and the plate glass of the comgeodes lined with crystals, flints, fibrous sulphate of lime, crystalized carbonate of lime oolite, chalk, red and gray ocher, calcareous spar, gypsum and soda are found in the cave.

Plate Glass.

The Albany Knickerbocker states that the plate glass manufactured by the American Plate Glass Company of this city is the invention of John P. Pepper, of Albany. This is really news to the scientific world. Plate is really news to the scientific world. Plate
glass was manufactured before Mr. Pepperwas
pany referred to is made at their works, Eas Brooklyn, by Joseph Dickson, the introducer but not the inventor of the art.

Artiflcial stone.
Fifteen parts of clean sand, five of plaster of Paris, and three of lime, mixed with animal blood, and made into a thick paste, then molded into any form, becomes very hard, and if not exposed to the weather, will endure as well as natural stone, which it resembles in appearance.

IMPROVEMENT IN CARRIAGES.

Improved Carriage
This invention, which has reference to an mproved construction of vehicle, denominated the "kophilon" cart or carriage, consists of a ight, open, frame-work body, provided with sides or wings extending over and above the yres or upper portions of the wheels in an urched or shell-like form, the axles being secured through the intervention of double C springs to the underneath fixings of the seat n such a manner as to work freely within the center of the open frame of the body.

A New Sugar Plant.

Mr. Wray, an American gentleman residing in Paris, in a communication to the London Times, describes a new plant of the sugar-cane species called the "Imphee," the culture of which seems destined to bring about a revo lution in the production of sugar. A Chinese varicty of this plant called the "Shurgo" has been recently cultivated with some success in French Algeria. But a far more valuable species is the "Zulu-Kafir," of which Mr. Wray has fifteen varieties, collected in Cafferland. Sugar manufactured from these plants was first imported into Europe in the beginning of 1854. The plants vary in time of growth from seventy-five to one hundred and thirty days, the most precious requiri $1 g$ only from seventy-five to ninety days to arrive at maturity, others, again, ninety to one hundred days, and so on up to the gigantic "Bim-bis-chu-a-pa," which requires one hundred and thirty days, and reaches a hight of thirteen eet. The Chinese kind, even in the luxuriant soil and climate of Algeria, does not ripen in less than one hundred and sixty days, and is less full of juice than the Caffer variety.

Palace Discovered Underground.
The remains of a magnificent palace have been discovered under a garden in the Isle of Capri. It must not only have been splendid in structure, but in situation, commanding a view of the Bay of Palermo and Vaples. Marble of various colors were used in its construction, and all its apartments, so far as the examinations have proceeded, are of the most spacious and elegant character. The doorway is twelve feet wide, and of white marble, and the rooms are paved in mosaic, while the walls are painted red, blue. yellow, \&c. Several coins of the reign of Augussus and Tiberias have been found, some of them disclosing the curious fact thatthe coins of one reign were at times recoined in another.

Frazee's Saw Min.

As we have had a number of inquiries respecting the above named saw mill, which we could not heretofore answer. We now state, for the information of allinquirers, that one of these

Fig. 1 represents a side elevation of a two- the axle; g g are blocks securing the springs wheeled vehicle of the improved construc- to the underneath framing of the seat; $h h$ tion; fig. 2 a back or end elevation. $a a$ is are the springs. Either single or double bodthe open frame-work body, $b b$ arched or shelllike sides or wings; ccis a top framing or seat, capable of being adjusted to the accommodation of two or more persons; $d d$ is a dash board; $e e$ are shafts attached to the lower framing, extending throughout the entire length of the body in such a manner that the line of draught may be below the axis of the wheels upon which the carriage runs; f is
mills, has recently been put up at Hoboken, near this city, for the express purpose of showing its construction and operations. It is operated by a small steam engine; and its parts, which are few and simple, can be easily disengaged, taken down, and put together, so as to render it capable of being removed without much trouble from place to lace, as the timber is sawed up around it, in rder to save the trouble and expense of drawing logs a great distance to it. The saw is upright, and is not strained by either gate or spring, but plays between guides-the upper end unconnected, the lower end secured to a ever, uniting it with the eccentric wrist pin on a driving fly wheel.

Manufacture of Chinese Porcelain.
Jerome Nickels, the Paris correspondent of Silliman's Journal of Science, gives a brief description of a work recently published in that city on the above named art, by M. Julien. The Chinese made porcelain as early as 185 B. C. The porcelain paste used by the Chinese is a mixture of kaolin, which is infusible in the furnace boing merely bated. The in the furnace, being merely baked. The
glazing of the famous Sevres' porcelain, of glazing of the famous Sevres' porcelain, of
France, is of pure flint, which is more difficult to fuse than the Chinese glazing.

Musp considers this of great importance to the trade.

ied vehicles may be constructed on the principle above described, but for two-wheeled carriages an arrangement of seats is preferred, by which the persons may be conveniently seated in couples, bar k to back, and the sides or wings, where great lightness is required, may be formed of wicker work.-[London Engineer

Inventors, and Manufacturers
ELEVENTH YEAR
prospectus ofthe
SCIENTIFIC AMERICAN. This work differs materially from other publications
being an ILL USTRATED PERIODIC LL, devoted chiefIy to the promulgation of information relating to the vari) Jus Mechanic and Chemic Arts, Industrial Manufacwork, and all interests which the light of PRACTICAL SCIENCE is calculated to advance.
Every number of the SCIENTIFIC AMERICAN contains Eight Large Pages, of reading, abundantly illus rated with ENGRAVINGS,-all of them engraved ex essly for this publication.
REPORTS OF U.S. PATENTS granted are also pub. lished every week, including offcial Copies of all the
PATENT CLAIMS. These Claims are published in he Scue
pers.
This publication differsentrely trom the magazines and papers which flood thecountry. It is a Weekly Journal of ART, SCIENCE, and MECCH ANICS,--having for its object the advancement of the interests of 17 ECH ANICS,
$M A N U F A C T U I C E R S$, and $I N V E N T O R S$. Each num MANUFACTUIEERS, and INVENTORS. Each num-
ber is illustrated with from Five to Ten Original Eugra bings of new MECHANICAL INVENTIONS; nearly all
vill of the best inventions which are patented at Washington being illustrated in the Scientific american. The SCIENTIFIC AMERICAN is the most popular journal of the kind ever pubiished, and of more importance
the interest of MECHANICS and INVENTORS than any thing they could possibly obtain! To Farmers it is also particularly useful, as it will apprise them of all $A g$ rccultural Improvements, instruct them in various Me chanical Tradas, \&c. \&c.
TERMS :- $\$ 2$ ase
TERMS:- $\$ 2$ a-sear ; $\$ 1$ for half a year Southern, Western, Canada Money, or Post Office
Stamps talen at their par value for subscriptions. Let tersshould be directed (invariably post-paid) to
MUNN \& CO

128 Fultonstreet, New York
 \section*{CLUBRATES}

Five Copies for Six Months,
Ton Copies for Six Months,: Ten Copies for Twelve Months, Fifteen Copies for T welve Months,
Twenty Copiesfor Tw ,

