rectly under the hooks of the sheath and between them. The plate, C , of the needle is then made to ascend by cam E^{\prime}, pressing on the top of lever F, and when the horn of the needles comes under loop m, on the hook, b, it strips or discharges said loop, and a stitch is thus completed. The loop, n, now lies around the shank of the horn of the needle, in the place formerly occupied by m, and the yarn is laid above by the guide, g, for a new course. The process thus continued for a length of time, makes a web of any desired width, like L, according to the number of needles, sheaths, and sinkers employed. The sinkers, it will be ob served by fig. 3 , force the yarn against the face of the needle to be caught by its barb, which act accomplished, they are forced back by the cam, D. These operations of the series of tools or devices in this trame are carried on with great rapidity, weaving or knitting like the common cloth power loom, leaving a selvedge on both sides the knit web.
On starting the machine, it is presumed that there is a course of loops on the horns of the needles. Motion is now given to the shaft of the cam cylinder, B, fig. 1 , when the slide, B, fig. 2 , is made to advance in the box, G, hy rod M, and the yarn guide, g, is made to travel below barb d, behind its horn. The traversing cam, c, on slide B, now pushes forward the sinkers, P ; these thrust forward or sink the
yarn into loops around the horns of the barks, and when a sinker is thrust on each side of a needle, the latter may be depressed by the cam, E , operating treddle, F , when the needle is forced down, drawing the loop last made through the one of the previous course (m fig. 3,) which is caught on the hook, b, and carried back from the needle horn by the lateral motion of A, as has been described. The formation of each loop is thus a distinct operation, going on as fast as the yarn is laid on by the traveler, g. In the old machines, a whole row of loops are first made, the sinkers thenraised, and the cast-off effected. The same principle of operation embraced in this machine may be effected on a circular frane to weave a circular web. This knitting loom is very certain in its action, as each loop is formed and thrust off with such accuracy that no loops are let down, and ail knots or unevenness of yarn are carried to the wrong side of the web, thus leaving a beautiful face on the fabric. All the parts are made strong, and can be operated with great rapidity. We have seen the loom represented in operation, and had occasion to admire its simplicity, originality, and the excellent fabric made by it. It will be secn in operation in the Crystal Palace, at the Fair of the American Institute, and more information may be obtained respecting it by letter addressed to Dr. Corwin, at Newark, N. J.
 is

the injurious effects resulting from the sudden jerking of the anchor chain, when a vessel is is riding at her moor
ings. In rough weather and a heavy sea, the windlass liable to be injured, and the chain to be snapped, from the cause above-mentioned. Mr. Emerson makes use of a stopper, one portion thereof consisting of a sliding weight
under which the chain passes. The weight is pressed
down upon the chain by means of a a lever, so that the de gree of pressure may be very of a a levery, rego that the de
he force of the jerk exceeds the phe the force of the jerk exceeds the pressure of the stopper
thechain will slipa little, and so afford the required re lief: This is a very cheap, simple, and effective inven. tion. Our nautical friends, we feel confident, will be
much pleased with its operation. T. B. Mackay, Esq., RAKES For REAPING MACHIVEs. Thos. N. Lupton, of
Winchester, Va.: Reing well aware that cranks. pitman

 Wrinch.-Henyy J. Be hrens, of New York City :
claim the mployment of an eccentrie, toothed on its peri
phery, and held down by a spring as doscribed, in combi.

 the pro
set rree
engine,
and we
top pas
water to pass to sa
tater which
to re.absorb
whiliee by me
to cause

Ship's Rupien

[In thisimprovement two rudders are employed to steer
ho vessel. One of them is attached to the stern post in the usual manner; the other placeddirectly bethind the
first, and secured in an iron frame which projects back for that purpose. The two are connected together with itcomes in contact with the after rudder, will asist the
it helmsmanin moving the post rudder, so that theycounter-
balance each other. This, it is said, reduces the labor of stering to aimost thothing, gives complete steadiness to the
wheel, and et, ables a single man, or even a boy, to guid wheel, and e eables a single man, or even a boy, to guid
the largest vessel in the fiercest storm. with perfect ease Tho inventor is confdent that in this improvement the
bjections which have hitherto attended the use ofdouble rudders are entirely overcome, while the important ad vantages above named are secured. together with many others not here enumerated. We commend this patent t.
the attention of all who are interested in marine affirs.]

 leather. d
sei lurth.
 purpose specified.
Secor d, we also cl
seco d, we aliso claim the combination ofthe tubular or
hollow auger, D, and wurm or screw, J, arranged sulvtan
hilly a hally as shuwn and for the purpose specitied.
[Messrs. Wyckoff on Morrion
[Messrs. Wyckoff \& Morrison have produced a very
novel inprovement. It consists of a a auzer made novelinprovement.
nally. in the form of a tube. The cutters are placed just within the periphery of the tube, at it, lower end, so that
when the latter is revolved a hole is bored and the auge enters the stuff, while the chips rise through itwhollow interior. The outwide of the tube is furnished with a spiral
ledre or screw, which assists the rise and discharge of the ledge or screw, which assists the rise and discharge of the
chips. It is said that nothing can exceed the facility and accuracy with which pump logs are bored, and other species of work accomplished by the use of thisimprove-
ment. Every mechanic will le struck with its simplicity and cheapness.]

 ing the cut-off valve. whereby the stean may be let into
the cyliuder and cut off at varying points for the purpose of regulating the furce of the blow of the hammer. We should need diagrams to illustrate its operation. The
movements of the hammer may lu instanianeously controlled, at the will of the operator.
the best Improvementw of its ciasi;

wiaw yeviaxax

 Ships 'W IND.AssEs-J. B. Holmes, assignor to J. R

 [We have in preparation some engravings illustrative of the above invention; they will be publi,hed as soon as
the foreign patents, which are now beingsolicited through
the Scientific American Patent Agency, are granted]

 a way. for the purpose specilied.
provement consists in a peculiar arrangement of parts, where by the depth to which the chisel enters the stuff is
mado variable. At the first stroke the chisel enters but short distance; at the next stroke it si, k deeper, and oon; the variation in the depth being accomplished with quired in order to descritie the parts clearly. It is suffi-
cient tosay that the features above mentioned, to which cient tosay that the features above mentioned, to which
are comt ined other new and convenient arrangements. render Mr. Goulds improvement, apparently, one of great
value. The rapidity of its performance, and the excel value. The rapidity of its performance, and the excel-
lence of the work it produces, will render it a very gener lence of the
al favorite.]

[This is a good improvement. In all our citiesit is cus-
omary to expose dray horses to the burning rays of the Lomary to expose dray horses to the burning rays of the
un insummer, although, owing to the slow rate at which un in summer. although. owing to the slow rate at which device as the above.]
 [The above invention relates to improvements in ma-
chinery for the production of the various king in in ular fifured ornamental moldings, that are now so exten.
sively used in the finishing -up of railroad cars furniture sively used in the finishing-up of railroad cars, furniture apartments, cabinet work, \&c. The gature of the inven-
tion convisty in combining a rotary pattern with the ordi. tion consists in combining a rotary pattern with the ordi-
nary up-and-down cutter gate. One of Mr. Schevenell's mach ines, we are told, will last longer, do more work and of a better quality, than any machine of the kind
known. We regard it as an excellent improvement.]

 leakage, and rendering the pump, more simple and effe
tive, and less liable toderangement.

Very Important Patent Case.

Sichles' Cut Off.-A very important decision has just been rendered by Judge Nelson, in the U. S. Circuit Court, this city, on a motion made for a preliminary injunction by W B. Sickles and others, to restrain D. L. Young, S. Cutter, J. Barstow, and George H. Corliss from infringing the patent of F. E. Sickles, granted in May, 1842, for a method of operating the valves of steam engines by adjustable cams or trippers, and the preventing of the valves from slamming in their seats, by a dash pot containing fluid. The defence set up was nuninfringement. The defendants were using the engine of Corliss and Nirhtingale, of Providence, R. I., for which G. H. Corliss had obtained two patents (in 1840 and 1851;) embracing an entirely different mode of operating the valves, and also preventing their slamming, by the use of a cylinder as a cushion. A motion was made for the same kind of injunction in the early part of last year, but the Court then ordered the points asserted to be iufringed by complainant, and not to be infringed by the defendants, to be tricd at common law by a jury. This was done in December, 1854, before Judge Betts, this city, when the jury decided that the defendants did infringe the plaintiff's patent as published on pages 157 and 158, vol. 10 Scr. Am. The decision now rendered by Judge Nelson is just the same as might have heen made on the first motion for a preiminary injunction,
as it is given simply on a rencwal of that mo-
tion, and it denies and sets aside the verdict of the jury. It amounts to this, that the patents of Corliss are essentially different from Sickles', and that his engines do not infringe the "Sickles Patent." We are of the opinion that the decision is a correct one, but the Judge ought to have rendered it on the first application, and thus saved the expense of the jury trial, which occupied three weeks. It appears to us that both Court and counsel have done complainants and defendants wrong, by thus leading them into such enormous expenses.

Wide and Na rrow Curves of Railroads.

The Tribune of the 23d ult. contained an article on some experiments lately instituted to test the power of locomotives onthe New York and Erie Railroad, says
"The width between the rails on this road is six feet, that of a great majority of the roads being only 4 feet 8 1-2 inches; and many contend that the resistance to motion on curves increased with each increase of width, an opinion which, although apparently well founded in theory, this experiment has done little to es tablish. Although frequent experiments of this kind have been tried at various times on long lines of narrow roads, this is the first to our knowledge of a 6 feet gauge.?
Experiments of this kind can just as well be tested on a short as on a long line, if the sonditions are the same. Clark says, on page 301 "A curved line has been estimated to have added 10 to 12 per cent. to the resistance in the case of the Bunscombe Incline on the broad gauge, (7 feet), the curvature being undetermined. On the narrow gauge, (Caledonian, 4 feet $81-2$ inches,) it was estimated that curved line, having one curve under 1 mile radius for every 2 1-2 miles, incurred an excess of resistance equal to 20 per cent. of that due to a line practically straight.'
The length of axle on a wide gauge is a great disadvantage on sharp curves, in comparison with the shorter axle on narrow cars; this is the only increase of resistance that can be experienced. But the Tribune is right with regard to experimental data, in reference to what that amount comparatively is, on narrow and broad gauges of the same curve. Loose wheels have been proposed and tried, to reduce the resistance on curves, but hitherto, so far as we have been able to learn, without success.

Rallroad Verdict.

An accident took place last week at West Albany, (near old Albany,) on the New York Central Railroad, by which the engineer, John Pratt, and the fireman, F. E. Kirkland, were killed. When a freight train was crossing the switch at the above-named place it parted its connections, and five cars were left on the track, and at this time up came the passenger train at the rate of thirty miles an hour and run into the five freight cars on the track. The verdict of the jury called at Albany on the 21st ult. is, "that the accident was caused by the engineer violating the rules of the Superintendent by running about twenty-four milez faster than his instructions allowed, which are that at that place the speed of the trains should not be above six miles per hour."

The editor of the Glasgow Practical Mechanies Journal, in the number for this month, reviews the work of D. K. Clark, on Railway Engineerng, says that his deductions on the resistance of engines and trains " appear to be thoroughy and well worked out, and tabulated with the skill of a master." This is the anthor we quoted as sustaining our views respecting other resistances than that of the atmosphere increasing according to the square with the velocity. Our views are sustained by the best and most scientific judges of the question. Our railroad companies should not forget that this practical and scientific author has said, "The great elcment for improvement is the permanent way.

Hydro-Sulshuric Acid-ELi ratum
In the last number Sci. Am., page 8, column for the word "hydro-sulphuric acid" read dilute sulphuric acid." Philologically the ord is correct. Its simple meaning is "wate and sulphuric acid," but in chemistry hydrosulphuric acid is understood to me.nn sulph
etted hydrogen-hydrothionic acid, S H.

