Strimtifit Ameritan.

THE ADVOSATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Sciontific merican pobuisamd werbly

At128 Fulton Street N. Y. (Sun Buildings., by munn ec company.
 AEents. F'ederhen \& Co., Boston.
A. Winh. Philidelphia.
A. Courtenay Charlest A. Agens.

 pal cities and towns in the CTited States. cal storese in in this cits, Brooklisn, and Jerses City.

 On the 23d of last month the grandest naval review ever witnessed was held near Portsmouth, England. The fleetestended in double line for a distance of twelve miles, and numbered more than 200 steam vessels of all sizes huge line-oi-battle ships, frigates, gun-boats, and floating batteries. Our government might learn a useful lesson regarding the construction of some floating batteries at the review, viz, to let out all its ship and engine building by contract to able and responsible private companies, as we have more than once advised. We leary by one of our London exchanges that three of these steam floating batteries were contracted for only on the 1st of Janarry last, and wera to ba finished complete by the 15 th of April-a little over three months-under a penalty of $\$ 5000$ for every days' delay afterwards. At the time specified they were all completed, according to the specifications, and oue of them sailed a distance of 500 miles to be present at the review, eigbit days after the date of contract expired. Each reacel is 9,000 tuns burden, 186 feet long, 50 wide, and 16 deep. The outside planking is 4 -inch wrought iron plate, which is lined with teals plank, 6 inches thick. The decks and sides are considered shell and builet proô. The crgines are 200 -horse power, high pressure, and woris rotary blowers to ventilate between the decks. They are all armed with large cannon and w.ortars.

Our floating battery at Hoboken has heen under construction for more than ten years, and is not yet finished. There are parties in our country, who, no doubt, would contract for, and complete any goverament job, as well and as speedily as any parties the government works of the British, or any other government. It is mortifying thus to be receiving such lessons from other countries. Let ceiving such essons from our duty and respon-
us wake up to a sense of our sibilities in order that we may sustain our already well earned reputation of an enterprising and active people without a peer.
Among the objects that attracted general attention at the naval review alluded to, were more than 100 steam gun boats, varying from 400 up te 1,400 tuns burden. They have all come into existence in the course of two years, and are novelties in modern warfare. They are considered to be a great improvement, and fulfil the same offices in a navy that flying artillery do in an army. It is rather singular that Jefferson, when President, had a strong predilection for gun boats, and had quite a number of them built during his administration. These were afterwards condemned by our government naval authorities; and yet we find that his views are now adopted by England as being wise and sagacious, respecting the efficiency of such vessels. It is true, his gun boats were sailing vessels, while the new ones of England are propelled by steam engines; but the question of their efficiency in a navy is the same in both cases.

The sulphuret of carbon is proposed as a solvent for scouring wool and making soaps, as a substitute for caustic alkali.

Woon bending Machine.
The inventicn illustrated in our engraving is adapted to the bending of all descriptions of wood, from plow handles up to ship tim. bers; but the particular machine which we represent is used for forming fellies for wagon wheels.
One of the principal objections to the use of many of the more ordinary bending machines, is the havoc which they occasion by breaking the wood during the process. We are told that it is quite common to cstinnate the loss of stuff, from this cause, at twenty-five to thirty-three per cent. That is to say, the manufacturer finds that only two-thirds of his stock, after it has passed through the operation, is fit for use.
It is claimed for the invention now under discussion that it saves a!l this loss, besides doing the work in a superior manner. If this is so it is an important improvement and merits attention. Let us see how the machine is constructed.
A is the former or pattera block, which determines the form that the wood is to receive. A is shaped like a half moon, and pivoted in its center, B, to the slides, C , of which there are two, one on each side of the frame. D is an endless revolving bed or apron, put in motion by means of the crank, D^{\prime}, and cog wheels. The bending is done by attaching one end of the stuff to the former, A, by means
of a clamp, E , and then moving the bed, D , in \dagger articles. By its use one man and a boy can direction of the arrow. The stuff to be bent bend ten sets of fellies per hour. Each of is pressed tightly between the former, A , and bed, D, so that when the latter is moved the yood is drawn in between.
In the cut, F is the board, partly bent. The position of the stuff, and also of former, A, at th commencement of the operation, are indi- les
The pressure of the stuff between the former, A, and bed, D, is obtained by means of the screw, so that it can be regulated with the n.tmost nicety. It is to this excellent manner of presing the wood that the success of the machine, in bending without breaking, is due. H is the screw, having a pinion, H^{\prime}, at its top, its lower end being connected, by means of rods, I, with the slides, C. The latter, as we have before stated, carry the bearings of formor, A. When, therefore, the slides, C, are moved up or down, the former, A, rises or is depressed accordingly. J is the crank of a slaft having a pinion upon its upper end, which gears with pinion H^{\prime} on the screw, H . The former, A , is raised and lowered by turning J; the convenience and accuracy of this mode of adjusting former Λ must be obvious. The wood, almost at the moment of bending being firmly pressed between Λ and D, its fibers cannot separate, but come out whole.
This machine is easily worked, hand power only being required for fellies, and such like steel،
hese sets is afterwards divided into eight pieces, so that the product is cighty sections of fellies, or eight hundred per diem of ten hours. Machines like that here shown sell for $\$ 150$, but their cost of manufacture is much Mr Edward J. Updegraff, York, Pa., is the inventor, and will be happy to give further information. Patented April 8, 1856.

Grape Vines in Gardens.
Grape Vines delight in being well manured, and will not give the best satisfaction without a dry bottom and abundance of rich soil. Λt this period of the season, those who have trained grape vines in their gardens, should xamine them thoroughly, to destroy caterpillar worms while they are small. One may ow be found in almost every bud, rolled up in a pellet of fine wool. All the labor thus spent will pay for itself. During warm dry weather, the surface of the ground around the roots of vines, should be covered with litter o protect the tender rootlets, that spread out so near the surface.
There are eighteen establishments for manfacturing steel in our country ; these have a capacity for making 14,000 tuns per ann imı. capacity for making 14,000 tuns per ann im1.
We have the best ores in the world for making steel。

