THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

VOLUME XI.

Scientific American, published weekly (128 Fulton Street N. Y. (Sun Buildin

d munn b.h. wales A. E.baioh Agents.
 A. G.Courtenay, Charleston. S S. W. Pease, Cincinnati,
A. Gery, Bellford © Co., London MM. Gardissal \& Co.,Paris
and Avery, Bellford \& Co., London MM. Gardissal \& Co.,Paris
Responsible Agents may also be found in all the principal cities and towns in the United States. Single copies of the paper are on sale a al all th
cal stores in this city, Brooklyn, and Jersey Cit cal stores in this city, Brooklyn, and Jersey City.

New Capstan Windlass.

All ships are so arranged that two anchors can be dropped from the bows, one on each ide of the bowsprit. The windlass for lifting the anchors extends across the front part of the vessel, so that both anchors can be wound up at once; and although it is comparatively seldom that both anchors are required to be used together, still the chains of both should be passed around the windlass, ready for emergency. To shift the heavy chains and permit the windlass to be operated with on chain only unon one anchor, and vice versa is no easy job; it requires time and labor. In more than one instance have vessels been lost for want of some quick means of handling the chains and windlass.
In the improvement illustrated by our engraving the windlass barrel is divided into two parts, one for each anchor chain; these barrels are so arranged that they may be connected or disconnected so as to work in conjunction or separately, as circumstances require. The change from one to the other mode of uperation is effected instantaneously by the mere throw of a clutch lever.
Beferring to the cut, $\mathrm{A} \mathrm{A}^{\prime}$ are the windlass barrels mounted on strong iron shafts, B. The ends of the barrels are furnished respectivel with cog wheels, C D, which gear with the pin ions, $\mathrm{F} \mathrm{F}^{\prime}$ G G^{\prime}, on shaft E . H is a clutch sleeve which slides on shaft E , and revolves with it having a feather inside. The wheels, $\mathrm{F} \mathrm{F}^{\prime} \mathrm{G}$ G^{\prime}, are loose upon shaft E, being thrown in or out of operation according as sleeve clutch, H , is moved. Power is applied through the capstan above the windlass, which communi cates with the latter by means of suitable gearing
The sleeve clutches, H , are moved by mean of the levers, II. As shown in the cut the windlass barrel, A , is in operation, in gea with shaft E , in consequence of the lever, I being thrown outwardly, so as to bring sleeve clutch, H, in gear with pinion G^{\prime}. The great est power of the capstan is thus applied to the windlass, A, but the latter moves slow. If it were desired to increase the speed but diminish the power of A, it would only be necessary to throw lever I inward, so as to connect sleeve clutch, H , with cog wheel, F^{\prime}.
If the clutch lever is placed in an upright or intermediate position, as indicated by I^{\prime}, so that sleeve clutch, H, makes no connection with either F or G, the windlass barrel will not move at all, the cog wheels upon shaft E being all loose, as before stated. Both barrel of the windlass, $\mathrm{A} \mathrm{A}^{\prime}$ are thus perfectly con trolled by the levers, I I', and are capable of being used either separately or simultaneously, at the same speed, or at different speeds, as desired. One windlass may be disconnected and stopped at any moment while the othe proceeds, and again put in motion; each is in dependent of the other, yet always ready for instantaneous combination, if required.
$\mathrm{L} L$ are spring pawls, which hold the purchase of the windlasses. The pawls are so arranged that, by hanging weights upon their ends they will serve as springs for the cables, and thus render the use of spring chain stop

pers unnecessary. When the vessel is riding ing run out, may be regulated at option. The and require no further comment. We consider at anchor during a gale of wind the pawls peculiar arrangement of the parts is notshown it a very valuable invention. Mr. John B. may be so weighted as to slip, if any sudden in our engraving.
 lass to turn and let out the chains. The pawls this improvement, neither is it expensive.also act as brakes for the windlasses, so that We are informed that its cost will be about by pressing the foot upon the levers, L L , the the same as the best windlasses of the ordinary peed of the windlasses, when the chain is be- construction. Its advantages are self-evident

TONGUEING AND GROOVING MACHINE.

Tongueing and Grooving Machine. In ordinary machines for tongueing and rooving, the boards require to be of equal widths throughout. If they are larger at one end than the other, they must be sawn down 0 as to be of even dimensions. This involves a waste of lumber, which, for many uses, is not required; also a loss of time and labor. The present improvement is intended to obviate these objections, the machine being so arranged that boards of all kinds and dimensions may be matched with the utmost rapidiy and convenience.
Fig. 1 is a perspective and fig. 2 an end sectional elevation. A A are central upright rollers, put in motion by means of gearing rom shaft B. C C' are feed rollers, gearing their tops with A, from which they receive motion. The boards are fed in between the rollers, and by them carried through the machine in alternate directions, as shown in fig. . The bearings of rollers, $\mathbf{C} \mathrm{C}^{\prime}$ have a latral movement, so as to accommodate them-
selv s to different thicknesses of boards. Th toggle joints, D D', are attached on one side to the bearing blocks, $\mathrm{E} \mathrm{E}^{\prime}$, of the rollers, C C^{\prime}, and on the other side to the frame of the machine, F. Each set of toggles is connected together by rods, G G'. Weighted cross bars, H^{\prime}, rest upon the peaks of the toggle joints, the tendency of the weights being always to spread the joints and press the rollers, $\mathrm{C} \mathrm{C}^{\prime}$, up against the central rollers, A. If differen thice f bords A. thicknesses of boards are introduced, the roll ers, $\mathbf{C} \mathbf{C}^{\prime}$, will yield accordingly ; therefore they are self-adjusting. I I' are the cutter shafts, the ends of which are furnished with small cutter heads, J^{\prime}, one for tongueing and the other for grooving. When the board has been grooved on one edge, it is turned over, the other edge down, and passed through on the other side of the machine, to be tongued. Thus there are two boards constantly passing through the machine, in different directions. The edges of the boards being laid upon the table of the machine, parallel with it, they will
it a very valuable invention. Mr. John B.
Holmes, of this city, is the inventor. Address J. R. Pratt, No. 62 Atiorney st., New York for further information. Patented Sept. 25th 1855. Patents have also been secured in Europe through the Scientific American Patent Agency.
pass through in the same manner; so that it matters not whether the boards be longer at one end than the other; they will be worked with the same certainty as if they were of equal dimensions throughout. The cutter shafts are put in motion by bands and pulleys in the usual manner.

The inventor tells us that this machine will o about three times as much work as most of the machines in use. It is certainly simple in its parts and easily operated. It is highly spoken of b_{y} those who have had it in use. Address Mr. Hiram C. Wight, the inventor 33 Summer street, Worcester, Mass., for furth er information. Patented Jan. 1st, 1856.

An amendment has been proposed to our Patent Laws in the Senate, to allow persons in Canada to take our U. S. patents on the same conditions as our own citizens.

