Stimite and dit.

Mensuring Falling Water.-No. 2

[Concluded from page 215.]
l'rom the many expcriments made to ascer tain the amount of water passing throug notches in a given time, $6-10 \mathrm{th}$, of the theo retic quantity may be taken for common practice, so that by the rules we have given, any person may easily calculate the power of any body o
th.
Templeton's Rules to ascertain the quantity of water flowing under a sluice and over a
weir, in a second, are as follows:-"If the water flows under the sluice, multiply the square root of the depth, in feet, by $5 \cdot 4$, and by the area of orifice also in fcet, and the product is the quantity of water discharged in culic feet per second. If the water flows over a sluice or weer, multipiy the square root of the depth in fect by $5 \cdot t$, and two-thirds of the product, multiplied by the leugth:and depth, also in feet, gives the number of cubic feet discharged per second, nearly.
Iequired the number of cubic fect per second that will issuefrom the orifice of a sluice 5 feet long and 9 inches wide, and 4 feet from he surface of the water. $\quad 2 \times 5 \cdot 4=10.8$ ve locity, and $5 \times \cdot 75 \times 10 \cdot 8=40 \cdot 5$ cubic feet per econd.
This quantity of water, multiplied by 60×4, and $62 \cdot 5$; then divided by 33,000 will give the horse power of the water.
The following is the formula of Wm. Black well, given in a paper read by him on the subject before the London Institution of Civil Engincers, May (ith, 18.51: VogH $\times l \mathrm{H} \times m$. Q is the deseharge of cubic feet per second, ? $=64 \cdot 3$-the dfiect of gravity. It is the head in feet; $l I I$ is the section of steam, and m is the co-eflicient of correction.
This is like the one given in the article last week.
We hare the letters of three millwrights before us, all of whom agree in the use of the particular formule and rules given as applied to estimate the quantity of falling water through erifices, and its power. Their ruleis to multiply the square rost of the head by $8 \cdot 5$ for the velocity of water in feet per second; reduce this to inches, and multiply it into the area of the oritice in inches, for the quantity of water in cubic inches; which, divided by 1728 gives the amount in cubic feet falling in one second. Multiply this by 60 seconds, and $62 \cdot 5$ lbs., which will give the weight of water in lbs. per minute. The resultant, multiplied by the hight of the fall, and divided by 33,000 gives the horse power of the water. Thus,What is the power of water passing through an orifice of 500 square inches under a six foot head? The velocity of the water operating through an orifice under such a head, one letter says, is $198-12$ feet per second; the other says $17 \cdot 5$ feet per second. We will take the highest velocity (from a letter of A. P. Torrence, ©xford, Ga.,) 19•8-12 $\times 12$ (inches in a foot.) $=236 \times 500$ (area of discharge) $=$ $118,000 \times 60$ (scconds in a minute) $=7,080,000$ (cubic inches of water per minute) $\div 1728$ (cubic inches in a foot) $=40971-4$ (cubic feet of water per minute ($\times 621-3$ (lbs. in a foot) $=255,194$ lbs. of water falling 6 fcet in one minute ; $2505,104 \times 6$ (distance fallen $=1,531$,-$164-\mathrm{t}-33,000=461-3$ horse power, from which if 25 per cent. be deducted, a good wheel, propelled by such water, will yield 34% horse power. With such a fall, and such an area of orifice, Messrs. Collins \& Gilbert, of Troy, N. Y., state they build water wheels warranted to give out more than thirty horse power. These rules are those commonly used by our millwrights.

The factor $5 \cdot 4$, given by Templeton, embraces the co-efficient of correction used by most millwrights; but some use the factor 5.1 which we think is most correct; it embraces the corrective co-eficient $\cdot 6$, given in the article last week, when $8 \cdot 5$ is used as the mul tiplicand for the effect of gravity. Thus what is the velocity of water per second flowing under a 4 foot head? V $4 \times 5 \cdot 5 \times \cdot 6=10 \cdot 2$; also $\mathrm{V} 4 \times 5 \cdot 1=10 \cdot 2 \mathrm{ft}$. This shows the harmony of the two methods.

In these articles our object has been to present rules which are in common use, and such
information connected with them as is not information connected with them as is not
generally known. Our desire is to have such information free from error, so that it can be depended upon. We will againgivethemethod of calculating the horse power of a certain quantity of water, to correct an error of a figure on page 208 , in the amount of water.
What is the horse power of 40 cubic feet of water jassing over 6 foot fall everv second? $40 \times 625 \times 6 \times 60 \div 33,000=27 \cdot 27$. l'roml this deduct one-fourth, for loss ky friction, \&c., and the actual power is $20 \cdot 40$; or, by the old allowance, one-third, and the actual power is $18.18 \mathrm{H} . \mathrm{P}$.
We have been thus particular and minute in order that persons who have falls of water, may be able to calculate their power for themselves.

An engineer, in this city, informed us that he erected a steam engine of twenty-five horse power in a factory at Greenfield, Conn., and yoked it to the main shaft which had been driven by a breast wheel stated to be seventy horse power. The water was shut ofil from the wheel, and the engine (not working above the rated power) drove the whole machinery, turning the water wheol also. This surprised him, for the water whecl of 70 horse power had not been ahle to do more than drive the machinery in the factory. He came to the conclusion that the common method of calcu-
lating the horse power of water-as compared lating the horse power of water-as compared with the steam engine-was wrong; and he reasoned thus:
"Supposing there is a fall of water 16 feet high, with an orifice of two square fiect ($24 \times$ 12 inchcs.) letting on the water to an overshot wheel ; only 32 cubic feet of water will merely lee discharged per second, which, by the common rules of calculating, would give no less than 08 cubic feet. Hy the law of filling bodies, a molecule of water will fall in a trunk from zero through 18 fect in a second, and no more; true, it will lave at tained a velocity of 32 fect at the end of thr second, but its average velocitv from zero is only 16 feet der secori, hat is, a trunk o
water $1 f$ f teet deep, with an open bottom, ?ill only discharge its contents once every sccond. This quantity, multiplied into the hight of the trunk, for the pressure, is the real horse power:"

The above is the name given to an ingenious contrivance by its inventor, Mr. l. Porro, a refired officer of the Picdmontese military engincers. We condense the following description from the Paris Illustration.
The improvement consists in so arranging a series of prismatic lenses that the larger portion of the spy glass may be placed in a vertical case; as, for example, in the head of a cane. Convenience in holding, traveling, and economy of space is thus secured, while the
power of the spy glass is, in some respects, improved.
A shortinstrument, like that shown in fig. , when held in the hand, is less liable to os cillation, and enables the observer to point it correctly and steady, and to measure by means of an ocular micrometer the distance to a given point, whenever the absolute size of the body observed is known, and vice versa; it is also pocket instrument without the usual sliding tubes, which prevent a corrrect centering of the lenses.

This spy glass consists of an objective rec-
tangular prism, fig. 1 , ground in the shape of a lens on one of its catheti, and throwin back below, by reflection on its hypothenuse the horizontal rays from the exterior body observed. These rays meet a second rectangular prism, where, by the last reflection, the are thrown on the ocular or anterior cathetus, also shaped like a lens. The distance between

the objective glass and the cye is conseguenty but the thickness of a prism, (hardly two inches,) the real length of the apparatus bewhich a the observer a means to hold in a steady position. The arrows indicate the direction in which the rays of light are reflected. Tlue exterior shape, fig. 2 , is very handy, not liable to get out of order, and the whole is quite portable, and the instrument very powerful. A is the eye glass. B thumb screw for regulating the focus. The greatest difficulty the inventor had to contend against Fas to oftain perfect achromatism; in this, we are told, he has fortunately succeeded perectly: his instruments are as free from colored spectra and aberration as the most perfect spy glasses constructed in the ordinary manner. A small micrometer is also adapted for the purpose of computing distances. The inventor has secured patents in France, and other European countries.

[For the Scientific $\Lambda_{\text {merican.] }}$ Eafety Life Ships.

Mesers. Editors-The daily press having spoken upon the subject of safety at sea, it is but reasonable to suppose that there are many like myself who believe that your paper-the most widely-circulated mechanical and enginecring journal in the United States-should also show the absurdity of sending ships to sea with no other protection against foundering than the shell of the vessel. We have heard of bulkheads until the subject has become as common-place as a household word, but we seldom pause to inquire what kind of bulkheads are meant.
The common sense of ship owners and masters has caused them to abandon the lumbering wooden tank for holding water in a ship's hold, substituting iron, because iron tanks were stronger, less bulky, and more durable than wood; and yet, strange to say, they build wooden bulkheads around the engines and boilers of an ocean steamer; in other words they build boxes of iron to hold water, and of wood to hold fire ; and this we are called upon to regard as an improvement. Will the common sense of this commercial community lead them to expect that these longitudinal and transverse bulkheads around the engines and boilers can be kept water-tight, even though they were calked at the termination of every voyage?
It is fearful to contemplate how horrorstricken the unfortunate passengers and crew would be in case of a rupture like that of the Arctic, to find that the leak through the seams of the bulkheads was scarcely less than those of the vessel itself. It is high time the traveling public looked to their own safety, and resolved to take passage in no steamer that has the bulkheads around their engines of wood, to become a tinder-box in case of
fire, and a seive in case of flood. These bulk. heads should be of plate-iron, extending from the ceiling to the lower deck, and be made water-tight; then, and not until then, will the ocean traveler fecl that he is secured against the dangers of the ship, which are sometimes even greater than those of the sca.
New York. A Ship Eullder.
Mr. Mechi, the celebrated English farmer, affirms that every farmer who cultivates a farm of two or three hundred acres without the use of a steam-engine has a great lesson to learn in agricultural economy.

heugh
ane
ance
ond

Inventors, and Manufacturers

Eleventh Year!

SCIENTIFIC AMERICAN.

This work differs materially from other publications being an ILLUS'TRATED PERIODICAL, devoted chief. ly to the promulgation of information relating to the va-
rijus Mechanic and Chemic Arts, Industrial Manufa rijus Mechanic and Chemic Arts, Industrial Manufac.
tures, Agriculture, Patents, Inventions, Fngineerins tures, Agriculture, Patents, Inventions, Engineering. Mill-
work, and all interestsw hich the light of PRACTICAL work, and all interestswhich the light of PRACTICA
SCIENCE is calculated to advance Every number of the SCIENT contains Eight Laige Pages, of readint abundantly illus trated with ENGRAVINGS,-all of them engraved ex pressly for this pullication
REPORTS OF $U S$.
REPORTS OF U.S. PATENTS granted are also pub.
lished every week, includins lished every week, including Oylcial Copies of all th
PATENT CLAMMS. These Claims are publined in the Scientipic Amprican i ia advance of all other pa pers.
This publication differs entirely from the magazines and papers which food the country. this a Weelily Journal of $A R T$, SCIENCE, and $A: C C H A N I C S$,-having for its MANUFACTURERS, and INDENTORS. TACH ber is illustrated with from Five to Ten Original Engra. vings of new MIECHANICAL INIVENTIONS; nearly all of the best inventions which are patented at Washington being illustrated in the Scientific Amprican. The
SCIENTIFIC AMERIC AN is the most popular of the kind ever published, and of more importance to the interest of MECIIANios and inventors than anything they could possibly obtain! To Farmers it is also particularly use ful, as it will apprise them of all $A g$
recullural Improvemonts, instruct them in various $M \theta$ ricultural Improvomonts,
chancical Trades, \&c. \&c.
TERMS :- $\$ 2 \mathrm{a}$ - year ; $\$ 1$ for half a year
Southern, Western. Canada Money, or Post Office Stampstakenat theirpar value for subscriptions. Let ters should be directed (invariably post-paid)
MUNN \& CO.

> 128 Fulton str
CLUB RATES. Five Copies for Six Months, Ten Copies for Six Months, -
Fifteen Copies for Twelve Months,
Twenty Copiesfor Twelve Months,

