
[Reported Officially for the Scientific American.] LIST OF PATENT CLAIMS Issued from the United States Patent Ollice
FOR THE WEEK

 the
thit
sorth
forth.
 FouvrinN PrN-Henry A. Brown and James. Wiley,
of Broorlyn,
with

 3a to keep
ing drawn.

 spout beinn op
pose specified.

 the wires are cornec.
stantially as set forth.

 for alimited dietarsene and
is absolutely
prevented.

 tantially as shown and for the purposese specified.

[Several engravings illustrative of the above excellen
invention will be found in N .15 I of our present volume

 Dringstop hinges, substantially as described, either with
or withouta front or back $\begin{aligned} & \text { upporting } \\ & \text { piece }, \text { a. }\end{aligned}$.

 tion with the tapes or cornpletung the deivery or a print
ed shet. and depositing it upon a table, sulbstantially a
specified.

 Imit ourseives
thin mat
We hot
cila

 move from side to side e. to prod
cular troush or table described
Fund

I aliso claim providing the extension or small box, E.
nd inctined way, n, susstantially as and for the purpose [For engravings and expla
Vol. 10. Scr. Ant., page 310.1

 Pabor Stove Desicn
Nass.
Nore-More than one.third of all as above were obtained throush the Scientific American A gency. Quite a number of highly important and valua
ble inventions are embraced among the number. The opening spring promises to be an unusually favorable sea. son for inventors. Business of all kinds appears to be revi. ving; money is becoming more plenty; speculative in.
vestments are in demand; holders of patent rights will vestments are in demand; holders of patent rights will
therefore enjoy better chances of realizing from their herefore enjoy better ch

For the Scientific American.

On page 103, present Vol. Scientific AmerCan, in answer to your correspondent "M. P. of Md.," you say, "The data of Mr. Conger and ourselves respecting the amount of atmospheric pressure on a square foot, was obtained measuring the wind's velocity",

measuring the wind's velocity."

As regards myself, you were not wholly cor rect. I have met with notable of experiments giving the pressure per square foot of the wind impinging on a surface. All that have come under my notice were obtained by causing the body to revolve against the air, which were necessarily, attended with uncertainty.
The data were the immutable principles of nature which govern matter in motion, and the result was obtained by calculation based on them
When matter is acted on by a force it will end to move with a veloclty, directly, as the intensity and duration of the action of the force,
ed on.

When a unit of matter is acted on by a unit of force during a unit of time, it will, if free to move, acquire a unit of velocity
When moving matter has its motion arrested, it imparts a force to the obstacle arresting its motion, equal to the force that gave it motion.
The truth of these premises has been proven by observation of the heavenly bodies, demonstrated by investigation, and verified by experiments ; and it flows immediately from them and experiments have also verifier the fact, that fluids, when impinglng perpendicularly on a plane, impart a force as the mass impinging and the velocity with which they impinge. Hence, by putting $p=$ the pressure, $v=$ the velocity, $m=$ the weight of fluid impinging per unit of time, and $g=$ the velocity imparted to a unit of matter by a unit of force in a unit of time, we have $v=g \div m p$, from which, to determine the value of p, we obtain $p=v \div g m$.
By assuming the first and second as units of space and time, and a mass weighing one pound, and the action of gravity on it as the units of matter and force, the unit of velocity is found to be $32 \cdot 1598$ feet per second. And, as the number of cubic feet of fluid whichimpinge on a foot area per second, will equal the velocity, by putting $w=$ the weight of a cubic foot of fluid, we have $m=w v$; and the pres sure per square foot $=p=v \div g w v$, from which we obtain $p=w \div v^{2}$
Atmospheric air weighing about $\cdot 07358 \mathrm{lbs}$. per cubic foot, when air is considered $w+g=$ $\cdot 002288$, which may be represented by a, when the expression takes the simple form $p=a v^{2}$. That is, the square of the velocity of a current of air multiplied by 002288 ,

Onf

 and one hundred miles per hour is 146.666 feet second. And by the rule $002288 \times 146 \cdot 666$ $=49 \cdot 2$ lbs. per square foot, pressure. At 30 miles per hour, equal to 44 feet per second, the pressure will amount to but $4 \cdot 43 \mathrm{lbs}$. per will be $196 \cdot 6$ lbs.Cf course, no more than a close approximation to the truth is intended by the above, a the pressure will vary with circumstancesthe form of the body, etc.-but the pressure will generally be greater than that indicated by the formula.
These calculations may be useful to persons attempting to make a flying machine, for it is demonstrable that no balloon can be construct ed to carry an engine powerful enough to impel it, even at a moderate rate, through the air and that no machine can be made to sustain itself in the air by mere sails or wings.
J. B. Conger

Jackson, Tenn., February 1856
[The tables of experiments referred to by , of which there are not a few, agree exactl with the calculations of Mr. Conger.

(For the Scientific American.)

Messrs. Edirors-I noticed recently a co munication signed "Farmer," and hailing from Chicago, Ill., the writer whereof offers to assure any man a fortune who will put in that market cutting box, simple enough, as I understand him, to be easily understood and worked by common farm hands, and firm enough of con struction to cut corn stalks as an every-day business, and not get "out of kilter." If he will put his proposition in the shape of an offe to pay a detinite and sufficient sum, either for certain number of machines or for a territorial right to make and sell the same, said offe to be accompanied with proper vouchers that the "root of all evil" shall be forthcoming I will engage to furnish the machines or right payment for either to be conditional on the satisfactory working of the cutter, to be tested by disinterested parties.
Another correspondent earlier in the season was calling from the South for a "Corn Husk Splitter," to prepare husks for mattrasses. If made sure of the pay and enough of it to pay provided the machine works, I will furnish on that shall be simple, not liable to get out of repair, and not require beyond a two-boy powe to prepare at least 500 lbs . of husks per day ready for use or for the market.

Innominata.
Fairmount, Marion Co., Va., Jan. 30, 1856.

Cowrie Gum.

Messrs. Editors-I noticed an article in a ecent number of the Scientific American, on "Cowdee Gum," which no doubt is the same as the article sold in this market as New Zealand gum copal in contradistinction to the African, and is sold in London under the name of "Cowrie Gum." It is found buried to the depth of some feet in the sand hills of Austra ia, where it has probably lain, the Lord only knows how long, like the Zanzibar copal, which is supposed to be the gum of a tree long since extinct, as no vestage of a tree now remains in the vicinity. In Australia it is supposed to have come from the Cowrie pine, hence its name. The whale ship Robert Pulsford brough a cargo of it into Lynn more than ten years ago, and cargoes of it have since been import ed into Boston and Salem, and there is now over five hundred tuns in the two places for sale. I imported hundreds of tuns from Eng land years ago, at a price which did not pay the expenses of transportation, \&c., from Aus tralia, when they could not give it away in England, and the consumption of it in this country was considerable before it was used in England. It was sold at one time as low as three or four cents per pound, and afterwards went up to 25 cts., and is now selling at $10 a$ 12 cts. in the rough state.
M. F. F.

Boston, Feb., 1856.
Growih of Western Towns
Oshkosh is a city of about 5500 inhabitants and is built upon the western shore of Lake Winnebago, below the junction or union of the Fox and Wolf rivers in Wisconsin, and has in a few years, from a state of wilderness, be come an active and flourishing city. Its prospects for agricultural and mechanical pursuits are very bright. though at present lumbering is its leading business. It is but little known Its recent growth accounts for this. A. V. P. A correspondent suggests that the brittle iron described on page 184, was never annealed and had been sent by mistake for malleable a singular one

