綃

Tumbling of Projectiles.

Messrs. Editers:-In my letter of criticism of the 8tiu ult., on guns and projectiles, I endeavored to show that it did not follow that because a gun dil not shoot straight therefore it was at fault. From a knowledge of facts, aud much experience, I concluded that it was more likely that in the case of the 600 -pound gin the projectiles were more at fault than the gus. I have since become acquainted with a remarkable case illustrative of the correctness of my general views as stated, and which case has been developed since the writing of that letter. From one of the forts near this city a 3 -inch Rodman gun (U. S. service) was sent to Washington Arsenal bearing this inscription,
"This gun wor't shoot straight." Probably from the press of business at this post the gun was overlooked. Two years rolled on, the gun beariug meckly the opprolious inscription. One of the young lieutenants, whose mind had profited by the every-day practical instruction elicited at this post, doubted the story. He examined thegun, and seeing nothing wrong with it, determined to rest it practically. To this end, 3 -inch Hotchkiss shell, 3 grooves, 5 -second paper fuse, and 1 pound ot powder, service charge, were used. Shot after shot was firel, each shell exploding in due time. The flight of every shell was excellent in every respect, and sound smooth. It was soon decided that there was nothing wrong with the gun. Doubtless, the officer who had tested the gun had used unsuitable projectiles, and given a verdict according to results.
I herewith give another example: Some time ago a gunsmith sent me an old rebel rifed musket for experiment, and with it I fired a number of shots, at short range, into pine plank. I found that every shot struck siderays, even at the short distance of six feet. On examining the rifling, I found that it was very mueh worn, and the bullet exhibited no sign of the wifies. I made new bullets, and drilled them out so much that hey contained a bout the fourth of a charge. I notched the base end of the bullet so trat powter would be exposed to the fire from the cap, and coated the end of the charge with collodion. The bullets being thus iormell, I recommenced my experiments, charge and bullet in one. The result was, that every bullet went point first into the target, showing that the explosive force of the charge had expanded the base of the bullet, filling the shallow groove. In this case I would say that the musket was at fault, but it illiustrates the value of the sabot.
On the same principle, I bave experimented somewhat extensively with 3 -inch shell, constructed with sabots about one inch in depth, and have witnessed uuusually favorable results.
In your issue of the 5th inst. I observe that Messis. Hotchkiss \& Son state, in answer to my communication, that I failed to give the cause of the tumbling of his large projectiles. I purposely but courteously hinted my conviction that the lead band was rendered weak by the grooves describel; I shall here state my views more in detail. The Hotchkiss shell is composed of three parts-sabot, lead band and shell. The bands holds the sabot or shell together; grooves have been formed from end to end for reasons given. As the shell has not corresponaling grooves auterneath the leal gronves, the lead is not more than about onc-cighth of an inch thick in the channels. Thercforo, between the shock of discharge and centritugal force of shell, which is greater in the case of the $4 \frac{1}{2}$ than the 3 -inch, the lead snaps asunder and flies in pieces at the groove. The shell and sabot come apart, giving the appearance of an exploded shell. To harden the Iead may be some advantage, but I think that sound philosophy would teach the ne cessity of corresponding grooves in the shell, and the shell in turn should be re-enforced, giving mutual strength throughout. I think Hotchkiss shell thus formed would give better results. Although I have a high opinion of this shell I think it stands in need of further improvement. This shell, moreover, when packed, rests on its base; this is another evil, for the thump of transportation on its sabot condenses the ${ }^{1}$ ead band, and, in some cases, increases the diame-
ter, so that the shell is apt to stick in the gun, especially when foul. I think for that also a remedy might be had. Hardening the lead would operate well, but the lead band might also be made smaller in diameter than the shell; force enough would be left to drive the band into the grooves. Thereis no other shell in use where the entire force of charge is so concentrated on the sabot. This is a great advantage; more, force is obtained than is necessary to give perfect rotation; hence, since this shell was grooved its range is increased by the reduction of friction, while the vent admits the flame to ignite the common fuse widhout fulminate, which is very desirable for safcty and economy.
Washington, D. C., Nov. 14, 1864.

About Steam Plows.

Messrs. Editors:-Last winter I traveled all over the western country, from Minnesota to St. Louis, Cincinnati, Chicago, and all the principal towns. My business was hunting up steam plows and land locomotives. I was interested in everything that had steam and moved on the ground. At every town and village I could tind two or three inventions in that line, more or less foolish. A few out of the number were, however, really ingeuious. The most ridiculous thing oi the kind was gotten up by the editor of the Prairie Farmer, at Chicago. I saw all the men that biad been trying to plow by steam, their engines also, and 'compared notes with the inventors. All the plowing engines in that country have weighed from ten to fifteen tuns. Now just think of a steam engine of such weight traveling on the soft ground, and then ask it to plow! Was it not discouraging to find that all the men engaged in steam-plow business think that they must have a heavy engine to increase the traction on the ground. The facts of the case are, that an increase of weight will increase the necessity for traction faster than it increases the tractiou. A heavy engine will sink the wheels so far into the ground that the wheels will be traveling up a steep grade while on the level. A heavy engine drawing a heavy train on the rails is a different case. I intend to depend on sufficient claws on the drive wheels to make traction, and buill my engine as light as possible. 'The cause of all the failures in steam wagons on common roads, and plowing engines, is to be foume in the great weight of the engines. They have been obliged to carry along a surplus power to enable them to ascend steep grades and overcome difficultie3, and such surplus power always includes a surplus weight, which surplus weight destroys all the practicability of the institution, if on the ground. Now, I propose to increase the power of the engine to suit any grade of hill, or any weight of train to be drawn, without increasing the weight of the engine, then it will be sensible to run on the ground by steam, and not otherwise.

Perry Dickson
Erie City, Nov. 7, 1864.

Test of Air.

Messrs. Editors:-A communication appears on page 295, current volume of the Scientific American, on "The Purity Test of Air," which contains a suggestion that an instrument might be invented to indicate the amount of oxygen in the atmosphere by allowing a jet of gas to burn in a limited supply of air. A very erroneous opinion exists in regard to the cause of impure air. We are often informed that the air in a close room is so poisonous as to almost destroy life, owing to the presence of carbonic acid gas. From recent experiments made by eminent chemists it is ascertained, that in a room inclosed by ordinary walls the amount of carbonic acid can never exceed one-half of one per cent. The most accurate experiments have never discovered more than fourtenths. This fact results from the well-known awl of "Diffusion of Gases." Thus, if two vials, communicating with each other by means of stop-cocks, be filled, the upper one with hydrogen, and the lower one with carbonic acid, though a barrier of indiarubber, earthenware, or even of water, be placed between, the gases will diffuse into each other, the light gas descending and the heavy gas ascending, until they are perfectly commixed. Now, the walls of an ordinary room are made of very porous materialbrick and plaster especially so; therefore, the carbonic acid in the room and the oxygen of the outside
air become commingled, and the air of the room retains its normal condition as far as the carbonic acid is concerned. This fact, while it proves the absence of carbonic acid, does not lessen the other fact, that the atmosphere of crowded and ill-ventiated churches, cars, halls and other rooms is very hurtful; for this reason, that a certain eflluvium and organic matter is exhaled from the system, which, being inhaled, occasions the oppressive feeling we all know so well. The victims of the Black Hole of Calcutta perished, not from hreathing carbonic acid, but, being overheated and crowded logether in a small room, were suffocated by the efluvia arising from their own persons.
J. J. M.

New Haven, Nov. 16, 1 ®̊64.
[Our correspondent's position is correct, provided time be allowed for the diffusion to take place, but time is necessary. Atmospheric air in a vessel may be displaced by simply pouring carbonic acid gas into the vessel. We have seen a row of canclles in an open trough all extinguished by pouring carbonic acid gas into the upper end of the trough. We have no doult that the carlonic acid was the principal cause of death to the strugglers in the Black Hole at Calcutita.-Eds.

Boring for oil near Chicage.

Messrs. Editers:-As Dr. Stevens, in a recent article in your paper, alluded to appearances of oil in the stone of which the Second Presbyterian Church in this city is constructed, it may prove of interest to your readers to detail some of the facts connectel with the boring of a well near the quarry from which this stone was taken. This well is now in the process of being bored, and has reachel a depth of 620 fect. In and about Chicago, except at the point of horing, the alluvial soil is about 100 feet in depth. At this place, however, an uphearal or matural convulsion has thrown about 100 acres of rock to and above the surface of the surrounding prairie. This point adjoins the city limits of Chicago, and is only about lwo miles from the center of the city. The formation is the Upper Silurian. The surlace rock, 35 feet in depth, is a dark fosilif crous limestone, thoroughly saturatel with petroleum. Immediately beneath this is a stratum of what we call Athens marble. It is a coarse-grained, yellowish-white limestone, an excellent luvilding material, out of which many or our first buildings are crected. This stratum is 100 feet in depth, and is varied by occasional bands of perfectly white marble. All through the surface rock plenty of oil was found. The Athens marble being exceedingly hard and compact, no oil was found in it. Unclerlying this stratum we penetrated a band of conglomerate rock, flint and limestone, very hard, inter spersed with thin layers of iron pyrites and one trace of copper. This was 100 feet in thickness, and whenever crevices appeared in the rock strong indications of oil were found. Bencath this conglomerate we entered the shale which separates the Upper and Lower Silurians. This band here is 156 feet thick, characterized by no special peculiarities. We met with noth ing but.a few bushels of nodules of more perfectlyformed shale, which occasionally dropped into the well, but this entire band was saturated with petroleum; the sediment came up like putty-thick and greasy; a test by distillation afforled a small quintity of oil, and naptha in abundance. Gas now be gan to escape, and sigus of oil were abundant. After this the drill penetrated the upper surface of the Galena limestone, and where this shale rests upon the underlying rock, at a repth of 527 feet, the largest quantity of oil jet seen was tound. The drill and drill rods were covered so thickly that the oil ran from them in considerable quantities; these signs were highly encouraging. At 539 feet the first sandstone was entered, and here again oil was visible in amounts sufficient to produce saiisfaction. This sandstone is 71 feet thick, and shows oil throughout the entirc stratum, but whenever there appears a seam or crevice, or where two layers of different kinds of rock come together, leaving a crack or opening between the two, the signs are far more abundant and favorable. At $\mathbf{6} 08$ feet another band of limestone contain ing flint and sulphurets of iron was struck. It is very hard, and progress through it is slow. It is in this rock that the drill is now at work at a depth of 620 feet. At the present writing this well is in constant commotion from the action of escaping gases;
it boils and roars and surges; the water at times is forced to the surface, and then suddenly falls, 30 and 60 feet. The water usually standing in the well is about five feet from the surface of the ground. From the number of seams containing oil which have already been passed through, from the quantity obtained, and from the escape of gases, I have no manner of doubt that now a pump could be inserted in this well, and oil enough obtained to make it pay expenses.
G. A. Shufeldt, Jr.

Hermetic Barrels.

Messrs. Epitors:-There is a description of a hermetic barrel on page 288, current volume of the Scientific American. There is also a reference to said barrel on page 202. Barrels intended to contain refined oil and spirits, are invariably glued on the inside, and, in most cases, painted on the outside. This is a hermetical package, but owing to shrinkage of the wood the glue cracks at the joints, and leak age is the consequence. I have known for some time that a perfect hermetical barrel is possible. The impermeability of the wood is accomplished by having the annular layers concentric in the package as they are in the tree. Our present mode of getting out staves is radial with the trunk of the tree, thus cutting the annular rings in lengths equal to the thickness of the staves, thereby exposing the cellulose portion of the wood to the percolation of fluids, that not only pass through the open pores, hut dissolve the mucilaginous matters contained in those that are closed. By getting out the staves tangen tial to the circles of annular growth, the trickness of the staves would admit of quite a number of layers, the capillaries of which could be filled with water and the ends sealed up, thus preventing shrinkage, preventing percolation, and producing, beyond a doubt, an hermetically sealed package. This mode of getting out staves has another advantage. It is well known that old barrels are tighter than new ones, arising from the fact that the gummy matters having been dissolved, the cellular layers collapse under pressure of the hoops, bringing the ligncous layers closer. But what the barrel has gained in "seasoning" it has lost in durability. The wood being saturated with oil liecomes as brittle as if it was dazed. By preventing the absorption of oil, the wood will retain its fibrous tnughness; and if it be true that the lower ligneous layer must be pressed against the upper ligneous layer, to act as a fulcrum to break it on, we will be less troubled witn broken staves, with their leakage and loss.
Boston, Mass., Nov. 10, 1864.

A Missing Boiler-maker.

Messrs. Editors:-We have at the Union Volunteer Refreshment saloon a lady refugee, from Richmond, Va., with four children. Her husband was forced into the rebel ranks, butdesertel in November, 1863. She left the following April in search of him. All her efforts to find him seem in vain, aud she is much distressel in consequence. Our Committee have spared no pains to find his whereabouts, but have not succeeded. It occurred to me while perusing the Scientific American that a communication in your columns might be the most likely means of finding him, if alive, as he is a boiler-maker. His name is Richard Rodd.
By giving this matter a notice in your valuable paper you vill serve the cause of humanity. Any communication may les sent to my address, or to our saloon.

Jonn W. Hicks,
No. 713 South Second street, Phila.
Philadelphia, Pa., Nov. 22, 1864.

A Born Machinist.

Henry Maudsley, one of the most eminent of English mechanics (whose death is reported to us among the news brought by the last foreign steamer), had this mechanical instinct strikingly developed. His father was a carpenter, but young Maudsley himself was much fouder of working in iron, and would often excite the anger of the foreman by stealing off to an adjoining smithy. He urged so hard for a change that when fifteen years old, he was transferred from the carpenter's to the blacksmith's shop. Here he became an expert worker in metal, and was soon quite noted for forging "trivers" with
great speed and skill, the old experienced hands gathering rcund to admire him when at this work.
When a boy has the innate love of his trade that Maudsley had, and thousands of American youth all over the country to-day have, he docs not remain at the foot of the ladder. Take a boy-there are plenty such-who has no particular predilection for anything, and put him at a trade, and he will always remain a mere workman. But boys like Maudsley, almost without knowing it, are urged on to something beiter. At this time Brahmah, the lock-maker, had great difficulty to find mechanics skilliul enough to make his locks with the neat precision he wanted. Young Maudsley was suggested to him, and, on being sent for, the Woolwich blacksmith came to London.

He was but 18 years old, strong, muscular, tal!, and remarkably handsome. But both Brahmah and his foreman thought he was too young to be put in the shop with old workmen. 1 worn out vise bench was lying near by, and Maudsley seeing that his chances were in danger, asked permission to go rimht to work and tix it up. He did so, and the job was so spiendidly executed that he was at once engaged, and he became as much a favorite in this as in his former shop. He rose in position and became foreman. In 1797 he opened a shop of his own, and he and his wife (for a pretty girl had a little time before accepted the hand of the handsome llacksmith) clearing the hired shop of the dirt and rubbish left in it by a former tenant. His first customer was an artist, who gave an order for the iron frame of a large easel; and thenceforth Maudsley's shop had plenty of work. His next success was the invention of the slicie-rest with which his name is usually identified, an invention, too, which all familiar with the use of the turning lathe, now consider indispensable. Maudsley subsequently became a famous manufacturer of machinery; but even when he employed numbers of men, and found it necessary to labor more with the head than the hands, he used to go often to the forge and work enthusiastically witi the sledge hammer, just from sheer love of his art. In time his shop became as it were a college of mathematical art, from which the best mechanics were prour to graduate.

The French Grape Harvest.

A traveler who has closely watched the progress of the vintage through France is of opinion that the present will rank among the best years. Such a good result was not expected in the month of August last. At that time the grapes had become hard in some places for want of rain, and in others they were scorched with the extreme heat. Fortunately, in the midale of September, a beneficial rain fell, which brought moisture into the veins of the plant. As the rain was prolonged the fears of the vine-dressers were again roused, and some of them gatherel their grapes between two showers. fearing they would be washed away. "Quantity," said they, "is snfficient for us, for nobody can expect good quality this year." Contrary to their prediction, however, the rain ceased on the $22 d$ of September, and an east wind set in with a bright sun. A complete transiormation took place in the vineyards. The grapes that were shrivelled became full, and those that were green ripened in 24 hours. Hands were wanting to gather the grapes, and much would have been lost had not the commanders of regiments lent their men to assist the vine-dressers; and it was at that moment that the journeymen coopers struck tor higher wages. The traveler was present at the making of the wine in the Medoc, and says the grapes are never pressed, except to make the wine used in the famils, after the juice has run into a vat over which the grapes are placed. He describes themagnificent wine cellars at Bordeaux on the Quay des Chartrons, which are galleries lighted with gas, through which one may walk or drive amid 10,000 casks and 500,000 bottles of the best wines in the department. The cellars of the wine-growers are not so extensive, being only formed to receive the produce of two crops. Sometimes it is a marquis or an earl who does the honors to a visitor, but the majority of the wine-growers leave that duty to be pertormed by their head cellerman, a person who possesses the same faith in his master's wine as he does in his religion, and is as anxious in the care of his casks as he is in that of his children.

Iron Fortifications.

A large number of military and scientific gentlemen recently visited the Millwall Iron Works, London, to view a three-gun wrought-iron shieh, completed to the orcler of the Russian Gorernment, for the defence of Cronstadt. Tiee shield in question is constructed upon the system of fortification pateuted by Nessrs. IIughes and Lancaster. The following are the principal meclan:cal details of the massive structure:-It is 43 feet 6 inches long by 10 feet in hight, and is composed of wrought iron bars of a size hitherto unattempted in "grooved rolls," 12 inches by 12 inches, rolled with a "rebate," and corresponding hollows on the opposite side, strength ened by dovetailed ribz at their back, 3 inches in thickness, which are attacled by keys or wedges in dovetailed holes to upright beams or girlers, 14 inches by 14 inches, on each side of the eminrasures and at the ends, and in two equal divisions of its length, to four frames or brackets like the letter A, with one vertical side. The tomatation plate on which the whole structure stands is 43 feet 6 inches long, 2 feet wide, and $3 \frac{1}{3}$ inches thick, rolied in one length. The total weight of the shield is about 140 tuns. Each embrasure is 4 feet from the platform, and 4 feet high. In the throat it is 2 feet 2 inches in width, or, with the shelving of the cheeks, 2 fect 10 inches. The military advantages oit such an opening in an iron parapet of 15 inches thickness is that the guns can be worked so as to take a greater sweep of range than is possible where the parapet is of masonry. In point of strength, an inch thickness of iron is equal to one foot thickness of storework, so that the power of a resistance of the shield in cquestion is equivalent to that of a wall 15 feet thick. Λ s a matter of experiment it is to be put upon the parapet of one of the outer ports at Cronstadt, but should it be found to answer the expectations of General Todleben, it will itself take the place of the parapet, the whole metal platform being fastened by clamps and rivets into the granite rampart. The piece of work excited general admiration. The visitors had also the pleasure of seeing a 6 -inch plate rolled tor the defence of a ship's side. The company is at present executing a large order of them also for the Russian Government.

The Termination of an Great Strike.
English news mentions that the great strike of the colliers in South Stafiordshire has terminated in the submission of the workmen to the employers' terms. This was the greatest strike of laborers that probably has ever taken place. It commenced in August last, and before it concluded eighteen thousand laborers were standing idle, and their familics, embracing between sixty and seventy thousand persons, were left without support. A reduction of about five dollars upon the market price of a tun of iron reduced correspondingly the cost of material which enters into its manufacture. This lowered the wages of the colliers sixpence per day for one set of laborers and threepence for another, reducing their pay to four shillings sixpence and threc shillings threepence per day. The colliers insisted that the whole burden should fall upon the iron workers and not upon them, though the relations of labor are so intimately connected that what affects one touches the other generally in an equal degree. The employers, or " masters" as they are termed in England, showed that they could be undersold in their own markets unless the cost of material was reduced, and their only aiternative was either to contract expenses or close up their business and withdraw their capital to other branches of labor. They adopted the first expedient, and as the colliers would not furnish coal to them at the reduced wages, the iron masters closed their places of business, the customers went to other markets, and the whole district of Staffordshire has suffered accordingly. In the meantime invention has been set to work to furnish coal-cutting machines to supersede manual labor, and with every prospect of finding a useful substitute which will cheapen coal to the poor as well as to the iron manufacturer.
An organized attempt to burn the principal hotels in this city failed by the vigilance of the fire depart ment.

Tue stcamer Francis Skiddy was sunk on the 28th ult, a tew miles helow Albany.

Improved Ratchet Drill.

This ratchet drill is the most novel one we have ever seen. It is self-teeding, and has the details of the ratchet portion arranged in a very ingenious and durable manner. Every mechanic knows what trouble the springs on the pawls usually give; they are forever getting out of order, either breaking or "setting" so that they have to be continually repaired. This wrench has not a single spring employed in its construction. The movements are all positive, and the wrench is much stronger from the absence of delicate screws or other parts to be subjected to a heavy strain.
In Fig. 1 the wrench is shown in perspective, with the feeding arrangement. This detail is merely a clamp, Λ, falling in a recess on the socket, B, and haviug its other end slic'. ing over a standing pin,D. When it is desired to work with the wrench, the socket is run down to its place, and the clamp screwed up by the screw, C. When the drill turns so as to cut, all parts move together, and there is no action; but when the drill is stationary, on the back stroke of the "handle, the socket is held by the clamp, and screwed out so as to increase the pressure of the drill, and, of course, feed it down. This arrangement can be made to feed fine or coarse by simply making the pin, D , movalle over the top of the wrench, at E. In this way it would suit lange or small drills, for the latler require finer feed than the former.

In Fig. 2 the pawl and of the handle is shovin. The pawl and handle are all in one piece, and by being movable on the center, F , the pawl naturally pitches into the ratchet on the drill socket, G, inside the case, H. By this action no spring is required, and the pawl is much stronger than common ones.

In Fig. 3 the socket is shown partly in section. The spindle, I, has only a portion of its length cut with a thread, the lower part being turned true, and made to fit the inside diameter of the socket. As a consequence, the drill and wrench always stand straight, and a better hole can be drilled, to say nothing of the mechanical completeness of the arrangement for protecting the screw thread from injury. Sockets and spindles not so made invariably become loose and shaky, so that the drill and wrench stand at all angles.
The thumb screw, C, adjusts the feed at the pleasure of theoperator, for, when the friction caused by a maximum pressure upon the screw is greater than that between the clamp and the socket nut, the feed ceases, and only begins again when this pressure is reduced by the cutting of the drill. By this means a perfectly regular feed is kept up, and tlabiry to treath tools done away with.

These are the chicf features of this excellent tool, but we wish to say one word in favor of its construction. It is made of the very best wrought iron and steel. The drill socket, G, is of cast steet, and it and the spindle are, of course, one piece. The fits are perfect, the threads accurately cut, the cone center of the socket true with the spindle leelow, and the several parts are as landsomely finished as a prize wrench. It is by far the handsomest tool of the kinul that has ever come into this office, and the nost efficient one, also. The proprietnrs inform us that they intend making them better than this in future, and that they are determined to make the best wrench in the market, as they doubtless will. A hole can be drilled much quicker and truer with this wrench, be$c^{\text {ause the feed is always on, and is regular from be- }}$
ginning to end. For running fluted rimmers down in To use a Hibernicism-the bottom is at the top large holes on marine engine work it is a most useful The thin metallic part, which is spun up in the lathe, tonl.
It was patented by L. H. Olmstead, through the plied, upon the oil, and forcing it out of the tip. Scientific American Patent Agency, March 24, 1863, \mid This spring-bottom is brazed in the upper part of the can, at A , and is much more durable than when in the obverse position. When used on metal-planing machines oil cans are often punctured in the bottom loy the ends and angles of sharp chips, and in machine shops, generally, they are frequently injured in the way designated.
The body of this can is in one piece, so that there are no seams or joints to become leaky. The washer, B, is fast on the tip, and serves as a shoulder to slip the fingers over so as to spring the top in when oiling. This can was patented Nov. 18th, 1861, by L. H. Olmstead. Manufactured by Davenport \& Betts, Stamford, Conn., to whom all orders should be addressed,

OLMSTEAD'S RATCHET DRILL.

Winter Flowering Bulbs.

Henry A. Dreer, florist, of Phila., gives the and is manufactured by Messrs. Davenport \& Betts, ! following method to grow hyacinths and other bullos of Stamforl, Conn., to whom all orders must be ad- in the winter season, in pots and glasses:-
"For this purpose single lyacinths, and such as are desiguated earliest among the double, are to be preferred. Single hyacinths are ge nerally held in less estimation than double ones; their colors, however, are more vivil, aud their bells, though smaller, are more numerous; some of the sorts are exquisiteiy beautiful; they are preferable for flowering in winter to most of the double ones, as they bloom two or three weeks earlier, and are very sweet-scentel. Roman Narcissus, Double Jonquilles, Polyanthus Narcissus, Persian Cyclamens, Double Narcissus Early Tulips and Crocus, also make a fine appearance in the parlor during winter.
"Hyacinths intended for glasses should be placea in them during October and November, the glasses being previously filled with pure water, so that thbottom of the bulb may just touch the water; then place them for the first three or four weeks in a dark closet, box, or cellar, to promote the shooting of the fibers, which should fill the glasses before exposing them to the sun, after which expose them to the light and sun gradually. If kept too light and warm at first, and before there is sufficient fiber, they will rarely flower well. They will blow without any sun, but the colors of the flowers will be inferior. The water should be changed as it becomes impure; draw the roots entirely out of the glasses, rinse off the fibers in clean water, and wash the inside of the glass well. Care should be taken that the water does not frecze, as it would not only burst the glass but cause the fibers to decay. Whether the water is hard or soft, is not a matter of much consequence-soft is preferable-but it must be perfectly clear, to show the filers to advantage.
"Bulbs intended for blooming in pots during the winter season shorld be planted during the months of October and November, and be left exposed to the open air until they begin to freeze, and then be placed in the greenhouse or a room where fire is usually made. They will need moderate occasional watering until they begin to grow, when they should have an a,bundance of air in mild weather, and plenty of water from the saucers, whilst in a growing state; and should be exposed as much as possible to the sun, air, and light, to prevent the leaves from grow ing too long, or becoming yellow."

