THE GEOLOGY OF PETROLEUM.

We publish in this number an article by that practicle geologist, Dr. Stevens, giving a detailed statement of the geographical localities and the geological formations in which petroleum is found on this continent. To bring the positions of the rocks mentioned directly under the eyes of our readers, w'e insert below the table of geological formations prepared by the professor of geology in Union College, Schentady, for the use of the classes of 1864 and 1865.
It will be understood that the rocks in the earth's crust occupy the same relative positions as their several names in the table, the rocks formed in the azoic epoch being lowest in the series, and those of the historical epoch the highest.
mineralogy, the next three each from one of the geographical localities where the rocks are found, the carboniferous are so named from their chemical constitution, then downward they are geographical till we come to the azoic, which has, as we have said, no oundation whatever.
Comparing the table with Dr. Stevens's statements it will be seen that the oldest rock containing petroleum in any considerable quantity on this continent is that ancient coral reef extending from eastern New York westward across the Mississippi, which was built up in the shallow waters then forming the southern boundary of the continent, in those remote ages when there were neither land plants nor animals, but seaweeds and fishes were the highest orders of organized beings inhabiting our globe. Advancing

SUBDIVISIONS OF GEOLOGICAL HISTORY.
ERAS.

Era of Mind.
Cenozoic Era.

AGES.
PERIODS.
EPOCHS.
Human.
(Post Tertiary.
$\{$ Tertiary.
$\left\{\begin{array}{l}\text { Cretaceous. } \\ \text { Jurassic. } \\ \text { Triassic. }\end{array}\right.$

〔Permian

Azoic Era.
Azoic Age.

A great geological formation is now being deposited ät the bottom of the sea between Newfoundland and Ireland. In the same way most of the rocks of the earth have been formed. As they have been deposited at the bottom of the ocean over a limited portion only of the earth's surface, they have not en tirely covered the rocks that were formed before them, but as the newer rocks lap over the earlier, it is easy to see from the inclination of the strata at the surface which run under others, and which are therefore the lower and older formations.
It is now fully settled that the word azoic (without life) as applied to these geological formations is a misnomer; they all being filled with organic remains. Doubtless in the next chart prepared by Union College a more appropriate name will be employed. Indeed the whole nomenclature in those two columns called in this table " periods" and "epochs," is a conglomerate mass of confusion which will unquestionably soon give place to a more rational classification. The "ages" are divided strictly according to the positions of the rocks and the fossils which they contain, and there is now no good !reason why the subdivisions should not be made on the same basis. But glancing at the "periods" we find the latest rocks at the head of the column get their name from zoology, the next two from the obsolete geology af the lask generation, the cretacions eomes from
upward in the series, and downward in the slow march of time, petroleum continued to be distilled into the cavities of those rocks which were being deposited till after the creation of amphibious animals, and the appearance of those low orders of land plants which grow in the vast marshes that have since been converted into the coal beds of Pennsylvania and the West.
In these cavities this singular fluid has remained during those immeasurable ages that witnessed the creation of the first species of reptiles, the slow developement and slow decay of these species, to be followed by others in long succession, till the earliest appearance of pure land animals, then through the like slow progress by successive species of the mammalian races, till finally the secret hoard has been discovered for the use of this present generation of men.

Railways in India.-There are at present ten rail ways in India either opened for a portion of their whole distance or in process of construction, and some of these have branch lines. Two lines, the Scinde (114 miles) and the Eastern Bengal (115 miles), are finished their whole length. The total length of line now opened for traffic is $2,687 \frac{3}{4}$ miles, and 2,100 miles yet remain to be constructed lefore the system, as far as sanctioned, will he completed,

IMPROVEMENT IN PHOTOGRAPHY.

Jacob Wothly, a German photographer, has made an improvement in photographic printing which promises to be of much importance. Instead of preparing the paper, upon which the print is to be made, with albumen, he employs collodion; and, instead of the nitrate of silver as a sensitizer he uses one of the double salts of uranium. This salt is mixed with the collodion, and the only operation required is to pour the collodion upon the sheet of paper and hang it up to dry.
The first notice of the foregoing improvement we find in the British Journal of Photography of Sept 30th. The editor having witnessed the new process of preparing the paper by Col. Stuart Wortley, decribed it as follows .-
" First of all he took a sheet of plain paper (plain in the sense of its being neither salted nor albumenized) ; this he attached to a small piece of flat board, about its own size, by means of a couple of pins. He now coated it with a peculiar kind of collodion, no light being admitted into the room except that which entered through the large yellow window of the wellappointed laboratory. The paper was then removed and suspended in a dark closet for a short time, until it became dry. In this state the paper is sensitive, and this treatment is all that is required to make it ready for exposure in the printing frame. But not only so; the paper will keep, ready for exposure, for a considerable time. When we entered the laboratory, a picture was being washed which had just been printed on a sheet of paper sensitized in Germany, nearly a fortnight previously. When the collodion had become dry, the paper was placed under a negative in a printing frame and exposed to light. So far as we could judge it received an exposure of from ten to fifteen minutes, or about the same time as wrould have been given to a silver print under similar conditions of light. Unlike a silver proof, this recoived no over-printing, there being no lowering of the tone by the subsequent operations. When re moved from the printing frame and examined it showed a well-defined and tolerably strongly-marked image of a bister tint. It was then fixed by being, for two or three minutes, immersed in a large dish full of liquid; and, after being removed and rinsed with water under the tap, it was then transferred to a second dish, in which it rapidly acquired a rich deep purple tone. After another rinsing under the tup for a few minutes, the picture was finished.
"The simplicity of the whole operation struck us as being wonderful.
"Let us now glance briefly at some obvious advantages possessed by this new printing process. The property which it possesses of allowing a stock of sensitive paper to be kept ready for use when conrenient, will approve itself to many as being one of no small value; and, were this the only advantage possessed by it, it would of itself be sufficient to entitle it to the consideration of all photographers. But its claims are of a higher nature. No over-printing is necessary. When the eye is satisfied with the amount of detail visible, all the conditions of exposure are satisfied. There is no tax on one's judgment as to the amount of surplus printing requisite to compensate for the subsequent lowering of tone in the fixing; and in this the new process contrasts most fævorably with milver printing. Uniformity of result $8 \leqslant$ regards tone is another advantage claimed for this process. Variety of tone may, indeed, be obtained; but only, we understand, by varying the proportions of the chemicals employed. It is also stated to be very much cheaper than silver printing, which-there being no silver bath employed at allwe can readily enough believe. But its crowning advantage seems to consist in its discarding the aid of hyposulphite of soda. This useful and hitherto indispensable servant has been the subject of much invective, and doubtless deservelly wo. But in the case before us its services are dispensed with, and all the train of evils attendant upon its employment are happily evaded and, in connection with this, the lengthened washing which was entailed upon printra will not now be requirste.
"But before deciding on the exact value of thean advantages, which it will be readily conceded by all are real and important, it may be most pertinently asked, Of what quality are the prints?' a question
the answer to which decides the value of any printing process, no matter how simple and otherwise advantageous it may be. Our answer is brief. In all or any of the good qualities of a print-in tone, vigor and gradation-the prints which we saw produced by this process were not inferior to the finest quality of silver prints we have yet seen. Some of the specimens which we examined were totally devoid of any approximation towards the glaze which characterizes prints on albumenized paper, and these were perhaps the richest-looking photographs which have yet come under our notice; while others possessed the charac. teristic glaze alluded to in greater or less degree. This would seem to indicate the power of modifying the process to a considerable extent.
" With respect to the peculiar chemical agents employed, beyond the fact that some preparation of uranium constitutes an important ingredient in the collodion, we are not aware of what it consists. In the course of a few months, however, complete details will be given to the public. The toning bath contains some salt of gold; and, we believe, retains its toning powers up to the last atom of gold present in it."

On this discovery the London Times remarks:-
"The new process which has been discovered in Germany by Herr Wothly, and from him has been named 'Wothlytype,' discards nitrate of silver, and discards albumen. For the former it uses a double salt of uranium, the name of which is at present kept secret ; for the latter it uses collodion. We have explained that by the ordinary method, the paper to be printed is sized with albumen, and the surface of the slbumen receives the silver preparation, which is sonsitive to the light, and shows the printed image. The paper thus does not receive the image, but is, as it were, a mere bed on which lies the material that does receive $i t$. By the substitation of collodion for albumen, a different result is reached. In the first place, the film of collodion on the paper yields a beautiful smooth surface on which to receive the image, and the result is, that pictures are printed upon it with wonderful delicacy. In the second place, the collodion, before it is washed upon the paper, is rendered sensitive by being combined with the salt of uranium. The sensitiveness, therefore, is not on the surface alone of the collodion film, it is in the film itgelf, and so completely passes through it, that even If its bo peoled away from the paper, the image which it roceived will be found on the paper beneath. The vehicle thus employed is not less superior to all others yet known for receiving the negative image on paper, than it is to all others yet known for receiving the negative image on glass. The metallic salt which combines with it has also rare merits.
"In the first place, the manipulations are very simple and easy-far more so than in the silver printing process-and thus the labcr saved is condiderable. Next, the paper, when rendered sensitive for printing, or 'sensitized,' as the photographers may, keeps perfectly for two or even three weeks-an immense boon to amateurs, who can thus have their stock of printing paper 'sensitized' for them; where as, at present, when the paper receives the sensitive preparation, it has to be used almost immediately, and will not keep more than a day or two. Thirdly, the color and tone obtained are very various, includ ing every shade that can be got by the ordinary silver plan; but, in addition, it has the advantage of being able to print any number of impressions of exactly the same color, and of doing away with all such dif ficulties as show themselves in mealiness and irregular toning. The precision of result is a great point. By the silver process, the results are never certain, and even when the print comes out perfect from the frame, the subsequent process of washing and fixing go seriously to alter it. Lastly, the permanent character of the new method is very remarkable. Nobody seems to know exactly why the old silver process gives way-whether it be on account of the al bumen, or the nitrate of silver, or the hyposulphite of soda. We only know, that so many of the prints prepared by the old method fall away, that no reliance can be placed in those which seem to stand firm."

Cornish Pumping Engines -The number of pump ing engines reported in England for August is thirtyfive. They have consumed1, 719 tuns of coal, and the average duty of the whole is $51,000,000 \mathrm{lbs}$., lifted one foot high by the consumption of 112 lbs . of coal.

the engines of the "dictator."

To the professional observer the engines in the ocean iron-clad ship Dictator are not less remarkable, or interesting, than the vessel itself. As an example of what modern screw engines should be, they are worthy of examination. The simplicity of the design, the directness of the action, the entire absence of superfluous ornament and weight of metal, as well as the harmony in the vast proportions of the machines, strike the engineer at once. The cost of construction, which is usually very great in large engines, must have been much reduced in these, for there are no intricate castings, no joints, levers, or other parts which are not readily made in any ordinary machine shop.
It is a great advantage in these engines that they can be repaired in ports where there are only the ordinary facilities. No costly and ponderous crank shafts are to be seen, but the rod of each engine connects directly to a driving wheel on a straight shaft.
Neither are there any massive links for engineers to sweat and tug at in order to reverse the engines. A simple movement of the hand controls both of them with facility, and a boy ten years old could work them. They have been reversed from full ahead to full back in 20 seconds. Hydrostatic pressure moves the reverse gear as well as the cut-off valves, and the system is free from the objections which have hitherto attended this method of working reverse gear. Means are provided for working the engines by hand if necessary. The engines sit athwart ships, and the valve-gearing is in the center. Everything is in plain sight, and from his post the engineer can see every pin and principal part at a glance.
We take pleasure in being able to present a diagram of the movement, which is here appended.

the movement.
The diagram represents the engine as viewed from the stern of the ship; the cylinders, pistons and trunks being seen beyond the cranks and levers. It also shows the relative positions of the various parts, just as the port engine has commenced its descent, the starboard piston being somewhat above half up-stroke, with the connecting rod acting on the driving crank of the propeller shaft, nearly at right angles. Letters of reference are unnecessary, the movement iveing self-evident on inspection. The extreme movements, and the arcs described by the vibrating levers, are indicated by dotted lines; also the circle through which the crank-pin sweeps. The movement and general arrangement are identical with those on the U.S. steamship Princeton, constructed by Ericcson in 1842. If we substitute vibrating pistons, moving in semi-cylinders, for the two horizontal rockshaft levers, we have the Princeton's engine. The arrangement is appropriately termed the "Princeton movement." All the vessels of the Passaic and Tecumseh class of monitors have engines built on this plan, with the difference only that the cylinders are placed horizontally, back to back; forming, in fact, one cylinder, with two pistons, which actuate the short rock-shaft levers. The Monadnock, the daily press tells us, has engines of Mr. Isherwood's con struction. This is an error. Her engines are of the same kind, and built under Ericsson's patent.
advantages of the system.
The intelligent engineer will at once notice that the driving crank of the propeller shaft has a much greater throw than that due to the stroke of the pistons. This is the distinguishing feature of the vibrating lever engines; the great advantage resulting from it being a reduction of the strain on the main crank pin and journal, about one-half that of ordinary engine of equal power. It will be seen also that the slides ot ordinary steam engines, which are exposed to such
heavy angular thrust from a short connecting rod, have been done away with, and, above all, that the right-angled cranks of the common screw engine have been superseded by this arrangement. The serious difficulty of keeping several crank-shaft journals and crank pins always in line is thus obviated, as also an immense saving in the cost of construction. DIMENSIONS.
Diameter of cylinders, 100 inches; stroke of piston, 4 feet; throw of main crank, 3 feet 8 inches; long rock-shaft lever, 7 feet 4 inches; short ditto, 4 feet; diameter of crank-shaft journal and propeller shaft, 21 inches; rock shafts, 23 inches diameter, with 14 inches journals at the ends. Main piston links, 7 feet from center to center; main crank pin, 14 inches diameter and 20 inches long. The cylinders have two steam ports, 24 by 9 inches at each end; cut-off steam ports, 3 by 24 inches, 8 in number, opening and closing simultaneously; air pumps, 50 inches diameter, 2 feet stroke; propeller, 21 feet 6 inches diameter, 34 feet pitch; weight, 39,082 pounds. The entire frame work and pillow blocks of the engines are composed of polished wrought iron. The main crank is inserted in a polished cast-iron balance whetl, 12 feet diameter, the balance weight being arranged in a peculiarly tasteful and symmetrical manner. Viewed in connection with the massive character of the working parts-also all composed of polished wrought iron -the Dictator engines may be considered the finest specimen of marine engineering afloat. The engine room is 32 feet wide, 33 feet long, 12 feet high, and well lighted.

VENTILATION OF THE ENGINE ROOM
A remarkable feature of this engine room is a fan wheel, eight feet diameter, composed of polished copper, suspended horizontally under the upper deck, and worked by a direct-acting horizontal engine also bolted to the deck beams. A cylindrical trunk, 4 feet diameter, 3 inches thick, made of plate iron, is secured to the deck above the center of the fan wheel, a hole being cut in the deck for admitting the air from without to the fain, which is not inclosed in a box as usual. The fresh air drawn in is therefore distributed all over unc engme room iny the rotation of the wheel; complete ventilation being the result of this peculiar arrangement. The air thus drawn in and distributed passes off through twu hatches in the engine-room floor-which is ten feet above the ship's bottom-into the boiler room.

THE BOILERS

The Dictator has only six boilers, but they are un usually high, and are constructed with two tiers of furnaces. The total amount of heating surface is 3,400 square feet; total grate surface in 56 furnaces, 1,120 square feet. The boilers are of the Martin pattern, somewhat modified, and contain 10,640 tubes, the united length of which is $7 \frac{1}{3}$ miles; nearly two miles more than in the Warrior and Black Prince, English ironclads. In addition to the circulating fan in the engine room, already described, the combustion in the boilers is aided by two Dimpfel blowers, 78 inches diameter each, applied under the turret, through the top of which the air is drawn in. The smoke pipe is 10 feet diameter, 8 inches thick at the base, and is provided with a shell-proof grating placed about 6 feet above deck. The ash trunk through which the ashes are hoisted up at sea, is within the smoke pipe, there being a door on the side through which the ash bucket is taken out from the top of the hurricane deck, sufficiently high to be out of reach of the waves at sea.

Large Copper Casting.-Mr. Thornton, of the Elms, has in his possession the largest copper idol ever brought to this country, and one of the modern wonders of the world. Under a shed in his coachyard is no less a personage than the god Buddha, measuring over seven feet in length, and one of the most marvellous pieces of copper casting ever found. Direct trom one of the lower rooms of his temple, where he had been hidden away some 2,000 years ago, his godship has been brought to the New World captal of copper and bronze castings. It will probably be deposited in the Midland Institute. Thus, after a lapse of 2,500 years, Buddha will be enthroned again in a temple better worthy of him, because devoted to higher and more ennobling pursuits than the one in which he found his first resting place in the temple of Scottangunge.-Birmingham Post.

