Hotet

Pitches of Screw Threads.

Messrs. Editors:-Referring to the remarks o your correspondent, P. T. Kissane, in No. 16, current volume of the Scientific Americis, on the subject of screw threads, allow me to say that I am on a committec, with nine others, appointed by the Franklin Institute some months since, to take up the subject of a uniform system of sizes of holt heads, nuts and screw threads. We liave hell several meetings on the subject, in which we have discussed the importance of an uniform system, also the imperfections of all present systoms, it indeed they can be callei such, and we will very soon submit a complete scale of pitches and form of threads, such as we can recommend for general adoption by the American mechanics.
Our discussions thus far seem to convince the majority of us that the general practice in this country aud England has been to make the pitches of our screw threads too coarse; that what is known as the
" Whitworth standard," which is in general use in this country, is unnecessarily coarse for any common bolt work. We deem it a very important subject and would like to have an expression of opinion from all good practical mectanics.
Any communications giving light on the subject addresserl to the "Committee on Screw Threarls, Franklin Instilute, Philadelphia," or to my address, shall have comsideration at the hands of the committee.

Wis. b. bement,
Chairnan of Committee on Serew Threats, Franklin Institute, Pluiladelphia.
[We take great plcasure in publisling this communication because there seems to be a prospect of arriving at some solution of the very general dissatisfaction on the sulject of varying pitches for screw threals. For years we have heen agitating this point in the Somprete ammon. On correspendent, Mr. Bement, has undenscored the word "practical," mechanics, but in spite of this we sball offer some suggestions to the Commilfee which may be of some value as coming from one who has lwen, but is not now, : "practical mechanic." We hope that in discarding the "Whitworth stanlard" fractional parts. of uneven threads will have no part in the new arrangement. No man can count them in short lengths; few lathes or trains of gears can cut them, and in every sense of the word they are a vexation. What can be worse than 15_{+}^{3} threads in two inches or $9 \frac{1}{2}$ threads in seven-eigliths of an inch, or similar absurdities. There is one other point, too, which may be worth considering, and that is the nature of the metal the threal is used on. Cast irou being by nature crystalline, slould have a finer threall than wrought iron, brass work has always finer threals than wrought iron. These three are the metals most. in use. No machinist makes a thread more than threefourths full in cast iron becanse all ley'ond that weakens it ly tending to break off the sharp elge. Very many mechanics in small practice could not afforl to have two sets of taps; or three, for all have two sets
one for brass and one for iron-and this would tend to confuse the subject perliaps more than it would aid it. Regarding the bolt heaid and nuts, the matter is more difficult to set at rest. If a blacksmith in a small place had not iron larse enough to make the heads or the nuts, the machinist would have to take the best he could get, or else delay his job, and perhaps lose his money. Fine threads are as apt to be overrun as heavy or coarse pitrhes are to detract from the strength of the bolt, but we presume the Committee have taken these points into consideration and will give them all the reflection they deserve.Eds.

Food for Gold-fishes.

Messrs. Editors:-I have read your note concerning gold-fish in a recent number of your journal, and think I am able to answer it satisfactorily as I have always had much to do with these fishes in Europe and this country.
Gold-fish require food, though very little. The best is to take a white wafer of small size every two or
three days, grind it to powder and throw it into the basin. This will be plenty for five or six fishes. A great deal of care ought to be taken not to give more, as it may kill the fish, by their eating too much of it.
W. C.

New York, Oct. 13, 1864.
White wafers are made of flour and water.-EDs.

Hams Cured with Dry Sugar.

A correspondent sends us the following interesting advice on this subject:-
" The meat must not be allowed to freeze under any circumstance-freezing destroying the property in the juices, which prevents any application of sugar, molasses or salt from uniting with them and forming the chemical combination which keeps them from souring. Separate the right and left hams; suread them on a floor, shelf or in a box, the thick part of each ham overlapping the thick part with the butts elevated three inches more than the shanks. Bearing in mind, through the whole process, that the retent'on of the juices by placing the hams in a proper position and free from any kind of pressure is essential.
" To cure a ham of fifteen los. weight requires one lb. of good brown sugar. two oz. refined and ground saltpetre, half a pound ground sea salt. First appli-cation-saltyetre, and cover the face of the ham with sugar a quarter of an inch thick; on the fifth day rub the skin side witl sugar. Second applicationsaltpetre and a mixture of three parts sugar and one part salt; on the seventh day rub as before. Third application-hall sugar and half salt: in 7 days rub as lefore. Fourth application-same as last; in seven clays rub with balt sugar and salt; clean the flesh side of the ham. Fiftl application-very good molasses (not sorghum) as long as the meat wili alsorb it. Saturate the ham withsugar as you would in preserving fruit; the salt is only to flavor it; for hams intended for boiling, and which require more salt, you may use salt according to your judgment and give more time. The ham is now cured, and for purposes of broiling it will be found delicious.
'Hams shouk always ho dries without smoke, hanging them in domestic sacks, shank down. it you prefer smoke, hang for two months, and then commence smoking, olserving to have your meat elevated as many feet from your fires as practicable. Smoke-houses should be constrncterl so that the smoke is almitted at the top of the building; the meat loeing near a dry flooi, the smoke settles on the meat after being coolel. Hot smoke should never touch meat. Smoke very slowly, using green hickory smothered with green sawdust from white or burv oak timber, if you can get it. I have never used any thing else, and therefore cannot speak of the merits of coru cols or sassafras; but as a rule use timber that smokes red, not llack; during the last six hours smoking throw red peppers on the fire, it keeps ofr the "skipper bug." You may want to know what are the advantages gained by curing hams by this expensive process. Well, they are weight and superior quality; as to their keeping I never had a chance to ascertain it-lams cured in this way being " golbled up" inmediately when placed in market-their keeping qualities don't get a clance to be tested. Compared with a sweet pickled ham there isjust the same superiority in quality as there is between the sweet pickled and saltecl. Try a few.
"One word more about the special advantage of curing with sugar; fat cured with salt is repulsive to weak stomachs, consequently a large portion is trimmed off lams intendel for the American market that in England is always retained, for two reasons-economy and preserving the juices. Stomachs that reject fat when salted, find it palatable and delicions when cured with sugar.
J. T. D.
"Springfield, Ill., Oct. 3, 1864."

A Rolling Wheel aud Flying.

Messrs. Editors:-In your paper of Oct. 15, I saw two questions propounded both of which are founded on error. It is manifestly impossible that any point in the wheel should go "through a series of changes in velocity during each revolution, for that would imply that each one of any circle of points equidistant from the center was moving with a different velocity; and the points of the circumference, for example, would be continually approaching and re.
ceding from each other, or from the center. Each point of the circumference of a circle generates, as it rolls over a plane, a cycloid, as is well known. But every part of a cycloiel is generated with equal velocity for in proportion as the horizontal component diminishes the vertical increases, ancl thus the velocity remains constant. In the case of a wheel brought to rest, inertia tends to compress the particles of the periphery, in front of the point of contact witli the ground and to separate those behind. The reverse occurs when the wheel is startel from a state of rest, but during uniform motion there are no ten dencies of this kind.
If it is admissible to speak on two subjects I would like, while I have the floor to make a remark in regard to the sensible article on flymg machines which appeared in the same number. Those visionary and unmechanical gentlemen who have from time to time proposed various wing contrivaices to be operated by the legs and arms, seem to leave forgotten that it requires the same amount of power to raise a man 100 feet by flapping as it does hy any other means. Flying is only climbing up into the air with wings, then holding on there and sliding along. But the aforesaid climbing up and holding on is the worst part of it, for air is rather an unsubstantial support, and it will not do to stop and rest; on the whole, getting up into it is harder than going up a greasy pole. A man has not the strength of a bird in proportion to his size any more than he has that of a flea, which jumps several hundred times its own length. Let any one try taking a run upthe stairs of Bunker Hill monument, and when he gets to the top he can reflect, if he feels like it, that it would take the same power to fly to that hight, even if he succeeded in applying it as advantageonsly as nature has done it for us, to say nothing of the weight of the flying apparatus. We must resort, then, to the tireless steam engine, if no other more powerful motor be adopted. It would be nccessary to make a nice calculation, based on accurate scientific principles, of the weight of the different parts in relation to the area and speed of the propelling surfaces. It then we comline an engine designed for lightuess and the consumption of petroleum, one or more large screw propellers and a pair of flat, rigid wings whose inclination might be varied, we will have something which might perhaps contain some of the elements of a successful flying machine. Wm. Man, .fr.
Pliladelphia, Oct. 14, 1864.
[The motion of all parts of a rolling wheel is the same in relation to the axle and to the carriage, but not in relation to the eartl. The upper part is always moving the fastest along the road. Some very clear headed mechanics are of opinion that a machine may be constructed by means of which a man can fly by the power of his own muscles, but none of them sin) pose that a man can raise himself 100 teet high hy wings. The power required to skim along nearly horizontally is very different from that refguisel to ascend vertically:-Eds.

Another Conc Pulley itule.

Messrs. Editors.-I saw in the columns of your paper a simple rule for oltaining the size of cone pulleys, which I think I can simplify considerably; it may lee well mulerstoon, but I lave not seen it in print or practice. Myplan is to make one cone any size required; say, for instance, a four-cone pulley, 14, 12, 10 and 8 inches. Now suppose the smallest pulley of the next cone is 4 incles; adding that to he lar: 5 est pulley of the first cone, makes 18 inches, and 6 to the next in size, making 18 inches alse, and so on; like this, for example :-

$$
\begin{array}{rrrr}
14 & 12 & 10 & 8 \\
4 & 6 & 8 & 10 \\
\hline 18 & \frac{18}{18} & \frac{18}{18} & \frac{18}{18}
\end{array}
$$

The belt will run correct on either cone. Any cdd or fractional part of an inch will be the same. To make a new cone to matchan old one it is a quick and sure way. We frequently find cones that do not descend in gradual ratio, viz.:-

$$
\begin{array}{rrrr}
14 & 11 & 9 & 6 \\
6 & 6 & 11 & 14 \\
\hline 20 & \frac{10}{20} & \frac{10}{20} & \frac{1}{20}
\end{array}
$$

The same operation will produce the same results the belt will run equally well. h. Mechanic.

Lanesboro', Mass., Sept. 14, 1864.

