scientific Ameritan.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

VOLUME XI.
NEW-YORK, JANUARY 12, 1856.
NUMBER 18.

Scientific American, published weekly

At 128 Fulton Street N. Y. (Sun Buildings.) BY MUNV \& COMPANY.

Federhen \& Co., Boston. ${ }^{\text {A }}$
Agent
 A. G. Courtenay, Charleston. S. W. Pease, Cincinnatit. O
Avery, Bellford
\& Co., London MM. Gardisal \& Co.,Paris Responsible Agents may also be found
pal cities and towns in the United States. pal cities and towns in the United States.
Single copies of the paper are on sale a Single copies of the paper are on sale at all the
cal storesin this city, Brooklyn, and Jersey City. calstoresin this city, Brooklyn, and Jersey City.
TERMS $\mathbf{N Z}$ a.-vear, $\mathbf{8 1}$ in adv ance and the remain
der in six months.

A Water Wheel Rallroad

A Piedmontese, inventor, has taken out a patent for carrying railroad trains over Mount Cenis. His plan is described as follows :"A railway of the usual description is to be laid down in a direct line from the bottom to the top of the ascent. Between these two rails a canal is to be dug three feet nineinches in width, and about thirty inches in depth, which is to be lined and made completely water-tight with boiler plate. The motive power to be employed is a stream of water rushing down this canal. Mount Cenis, however, affords every facility in this respect. On the outside of the railway a cogged rail is to be laid down on either side. In the middle of a frame, ab ut the size of an ordinary steamengine without its tender, a water wheel, is to be fixed, having a diameter of twelve feet. On the same axis is to be fixed two cogged wheels to work in the cogged rails, of six feet wheels to work in the cogged rails, of sis feet
diameter. With this apparatus it seems clear that the descending stream must force the water wheel to make revolutions towards the top of the hill, and to carry round with it the cogged wheels in the same direction. As the diameter of these is to beehalf that of the water wheel, the rate of ascent will, of course, be half that at which the diameter of the water wheel moves. It is calculated that the latter speed will be ten miles an hour, and the former, therefore, five. It is further calculated, that a machine of these dimensions will carry up the proposed acclivity a weight of from fifteen to twenty tuns, or say from sixty to eighty passengers. For the descent, the water wheel, moving through and against the stream, wheel, moving through and against the stream,
will act as a restraining force to moderate and will act as a restraini
regulate the speed."
[The above is condensed from the London Alheneum, which objects to the plan on account of severe frosts during winter. We, however, look upon the plan as stupidly described, for we believe the Atheneum does not describe the invention clearly; it confuses the account of the action of the water wheel, and leaves an impression on the mindthat it is moved up the incline drawing the train after it, which would be a stupid impracticable plan. The invention is, no doubt, the use of a fixed water wheel at the foot of the mountain, to draw the train to the top of the ascent by a carriage and endless rope. The plan is good and economical where it can be carried out, but it is not a new invention.

Frozen Flesh
Mr. A. Bronson, of Meadville, Pa., says, from fifteen years' experience, he finds that Indian meal poultice, covered with young hyson tea, softened with hot water, and laid over burns or frozen flesh, as hot as can be borne, will relieve the pain in five minutes.-[Exchange

A Large Ruby.
The King of Burmah wears a ruby in the center of his crown which is larger than a hen's egg, and more valuable than tho celebrated Koh-i-noor diamond. It is more than two thousand years since it was found, and is beautifully cut.

PECK'S PATENT DROP PRESS.

The accompanying figure is a perspeciveland the crank thenceases to rotate. Thedrop view of the patent Drop Press (with its recent E, is now at the head of the fall, ready to deimprovements,) for which a patent was grant- scend, but a spring catch, not shown on the ed to Milo Peck, of New Haven, Ct., on the 28th Nov., 1851, and which was illustrated on page 140 , Vol. 7 , Scientific American.
A A are the standards, or upright ways between which the drop or ram moves. B is the bed or anvil, and D is the lower die on the face of the bed. E is the drop with the upper moving die secured in its under face. C is the frame which supports the gearing and machinery on the top of the press. F is the pitman rod attached to the drop, E. It is connected by a pin to the crank, G, on an up-
per shaft, which, as it is rotated, moves the per shaft, which, as it is roated, moves the has holes in it to connect with rod F, at dif ferent points from the center, to give a long and short stroke to the drop. I is the main driver shaft, having a cog wheel, H , on its inner end, gearing into another, H^{\prime}, on a hub, R, surrounding the crank shaft, to which it gives an intermittent rotary motion, by a rotating dog or catch, L, attached to an arm or sweep on the inner end of the crank shaft. The dog take into the small cog wheel on the hub, R, as it rotates, and thus acts as a clutch to connect the crank shaft with the rotating hub, R, to raise the drop, E, to the top of the fall. When the drop, E, is raised to the top of the frame, a small eccentric stationary rim (not seen) fitting close to the small ratchet wheel on hub, R , throws the spring ratchet, L , out of gear,

E, is now at the head of the fall, ready to de-
scend, but a spring catch, not shown on the upper end of the treddle rod, J, catches a sweep in the under side of the crank shaft, and holds the drop stationary at the top, while the main shaft and hub, R, have a constant rotary motion. The crank, G, however, is a little inclined from the center-as now shown in the figure-when the drop, E, is raised and caught, so that the moment the lower sweep of the crank shaft is relieved from the treddle catch, the drop, E, will descend by its own gravity. The workman, by placing his foot on thetreddle, T, at once releases the catch described, which holds the sweep of the crank shaft, and then down comes the drop with its die upon the lower die, D , on the anvil, and stamps the article which may be placed upon it. The machine is entirely self-acting, excepting when the drop is made to fall, and then the operator just places his foot on the treddle for every blow he desires to be struck. The rotating ratchet, L, has a spring, N, to hold it in contact with the teeth of the small ratchet wheel, and also to givea little, to allow the ratchet to be raised from the teeth of the wheel by the eccentric rim mentioned, to throw the crank shaft and the hub, R, out of gear as the main shaftrotates. The treddle, T, is for the purpose of tripping the spring catch which holds the crank shaft sweep when the drop, E , is raised to the top of the fall. When the perator is securing a piece of work on the
anvil, the main shaft keeps rotating, while the ratchet, L, being thrown out of catch with the small ratchet wheel, the crank shaft is kept stationary, with the drop, E, raised, and ready to descend, when the treddle, T, is trod upon. The mode of tripping the drop is shown and described on page 140 , in the volume heretofore referred to: the devices in this figure are nearly the same for this purpose. We have briefly described these operations, however, to convey a clearer idea of the tripping action of this drop press to subscribers who do not possess Vol. 7 Scientific American. The ways to guide the drop, E, correctly, are differently combined in this press, and are a great improvement on the old presses. In the old drop presses the rods or guide ways, A A, of the drop rest in grooves, and are bolted to the anvil bed, and the yoke on top of the ways is generally secured to the frame of the building in which the press is placed. In this press the face of the anvilitself is made broad, and is planed true, whilst the foot of each way is a broad smooth flange, fitted nicely to, and bolted to the anvil instead of its bed. The yoke on the top of the ways, A A, is bolted direct to the top flanges of the ways, and the anvil, Ways, and yoke, thus almost form one piece when adjusted and set. $a \boldsymbol{a}$ are guide flanges for the drop.
One great object to be secured in such presses is a true vertical blow of the drop, with its die, upon the die of the anvil. If the upper die does not fall true on the lower one, good work cannot be accomplished. In all common presses, the upright ways are liable to be thrown, more or less, out of the perpendicular, and require frequent adjustment, thus causing great trouble to the workmen. In the press represented in this figure, the upright ways being bolted fast to the anvil itself, and the yoke of them not being directly connected to the building in which the press is placed, if any part of the building settles, the ways, anvil, and yoke are so connected that they will not be thrown out of line with one another, consequently the press will operate with more precision, and will execute better work, and at the same time it will save much loss of time, caused by the common presses requiring frequent adjustment to make the drop strike true. More information respecting this improved drop press may be obtained by letter addressed to Mr. Peck, at New Haven, Conn.

A Tall Chimney.

At Preston, England, a chimney has just been completed at the work of Messrs. John Hawking \& Low, which is 2.58 feet in hight; its width at the foundation, 34 feet; the weight of the stone cap is thirty-one tuns, and 440,000 bricks have been used in building it.[Exchange.
[This is, indeed, a pretty tall chimney, but not to be compared with one in the city of Glasgow, described in the December number of Hunt's Merchant's Magazine, page 677. Its hight is 460 feet, and its circular diameter at the base 50. It is of the form of a cone, and contracts to six feet diameter at the top. Three millions of bricks, and thirty tuns of iron for bands, were used in its construction, and cost about $\$ 50,000$. It was built by Messrs. Tennant, to carry off the deleterious gases arising from their retorts in manufacturing chemicals. It is situated on elevated ground, and can be seen at a distance of 20 miles on approaching the city, from any direction. It is the tallest chimney in the world.

New Guano Islands.

A new island, containing mauy million tuns of guano, has been discovered in the Pacific Ocean; and it is believed that our farmers will much lower price

 ing in co
['The above lock is intended to combine the advantages of safety and cheapness. It is supposed to be "pick
proof:" The shackle is held by a spring bolt, and also by spring catch, both of which entor the eye of the shackle
together. but must be removed separately before the lock opens. You turn the key in one direction to push back
the bolt, and reverse it in order to remove the catch; the the bolt, and reverse it in order to remove the catch; the holes-a real and a false; it would take a stranger a soing appears to be an excellent improvement.]

 mer so as to dischagaine, B. containing the cylinder. W.
trigger only,
second he magain
with its hollowed flan ges and spring catches, 5 , in combi. with its hollowed flanges and spring catc hes. 5 , in compi-
nation with the ratchet teeth on the cross piec
ratchet hat wheel, te. on the end of a vibrating breeech,

 rod, 10, ar
purpose of
breech.

 fied. $\begin{aligned} & 1 \text { also claim refrigerating the air by extracting the cal. } \\ & \text { oric thereriom atter it has pased the pump, by means of } \\ & \text { the water bath surrounding the valve chamber and educ- }\end{aligned}$.
 fied.
 am aware that ane dd have heretofore been used ior clari.
fying olls, but my process does not rest on the use of acids
 ment, in manner substantially as described, of the pyro.
ligentic constituents of crude pyroligneous acid except the
acetic acid.

 raking the cut grain irom the platiorm, x.
[The cutters are operated by means of a wheel placed in an angular position upon the driving shaft, so that when the wheel revolves it has a wabbing motion and vibrates
the cutter bar back and forth. There is a clutch arrange. ment so connected with the cutter bar and the wabbling
wheel that when the cutters become clogged up from any cause, the wabbler and cutter bar are at once discon-
eected, and the machine ceases to work, thus preventing breakage. These parts are self-acting in their oper a
Altogether this improvement is an ingenious one.] Operating and Lubricating Sidpe Valves-Jas.
Cochrane. of New York City:I claim. first, moving a Cochrane, of New York City: I claim. frst, moving a
ibibriting tap or curved slide valve within tit chest, with.
out the necessity of astufng box, by the means or similar

 mold board and molding part of the share of a plow so
that a horizontaline drawn at han high across their
working side shall describe a convex of a circle, and any
 ally as set forth.
designs.
Hall Pendarts-Samue 1B. H. Vance, of New York
City. (assignor to Mitchell, Baily \& Co., of Conn.)
HALL PENDANTS-Samuel B. II. Vance, of New Yon city.

Deen Artesinn Weh.- Ileat of the Earth.
A brief discussion has been maintained on the above subject in the Newark, N. J., papers, by Seth Boyden and another correspondent signing himself J. P. The former takes the ground that the center of the earth is not a molten mass, according to the theory maintained by Prof. Silliman and the great majority of geologists; while the latter endeavors to sustain the Plutonic theory. In Mr. Boyden's communication to the Newark Mercury of the 31st ult., he states that he had received a communication from Messrs. Belcher, of St. Louis, Mo., respecting their artesian well, which is the deepest in the world, being about 2,200 feet deep, and still progressing, while the celebrated artesian well at Grenelle, France, which was believed to be the deepest, is but 1797 feet deep. The water of this well at St. Louis contains minerals in solution, and is unfit for sugar refining, but by boring still deeper, hopes are entertained that pure water will be found.
The temperature of the water at its bottom
cannot be obtained on account of a great vein which flows rapidly in at 1480 feet of its depth -down to this point its temperature gradually increased to 63 degs., but below this, Mr. Boy den is positive it will not increase in the same tio
Mr. Boyden has forwarded us the abovementioned letter, accompanied with a diagram of the well, from L. Holm, the foreman of Messrs. B., showing the strata which has been penetrated in reaching its present depth. The first stratum was twenty-eight feet of limestone ; the second two feet of shale; the third two hundred and twenty feet limestone; the fourth, fifteen feet of cherty rock; the fifth eighty-five feet of soft limestone; the sixth, thirty feet of shale; the seventh, seventy-five feet of limestone ; the eighth, two feet of shale, the ninth, thirty-eight feet of limestone; the tenth, five and a half feet of blue sandstone the eleventh, one hundred and twenty-eight and a half feet of limestone mixed with sand; th twelfth, fifteen feet of red marl; the thirteenth, 30 feet of shale ; the fourteenth, fifty feet of red marl ; the fifteenth, thirty feet of shale ; the six teenth, one hundred and nineteen feet magnesi limestone ; seventeenth, sixty-six feet of shale the eighteenth, fifteen feet of bituminous marl the nineteenth, eighty feet shale; the twentieth one hundred and thirty-four feet of limestone the twenty-first, sixty-two feet cherty rock the swenty-second, one hundred and thirty eight feet of limestone ; the twenty-third, sev enteen feet ofshale; the twenty-fourth, twenty feet limestone; the twenty-fifth, fifty-six fee shale ; the twenty-sixth, thirty-four feet lime stone; the twenty-seventh, one hundred and forty feet white soft sandstone ; the twenty eighth, one hundred and ninety-threefeet hard red sandstone ; the twenty-ninth, one hundred and seventy-one feet of sandstone with thin layers of clay ; the thirtieth, two hundred feet of limestone and sandstone. The size of the bore is nine inches to about half the depth of the well, then three and a half inches to the bottom. The boring was commenced in 1848, bs hand; in 1851, at a depth of 456 feet, steam engine was employed. The work has not been steadily conducted, but was stopped for some months every year, and altogether since 1854 ; but it is to be proceeded with again. The temperature of the water which flows out is 72 degs., and the great vein at the depth of 1480 feet is strongly impregnated with sulphuretted hydrogen. The cost ror boring this well has been about $\$ 10$ per foot, or $\$ 22$, 000 altogether. We can congratulate "young America" in having the deepest artesian well in the world, and as he has an unlimited amount of enterprise and stamina, we trust h will bore down to such a depth as will practi cally settle the central heat hypothesis for

The following are Mr. Boyden's views in op position to the central heat theory : "The rapid increase of temperature as we descend into the earth in its polar parts has been offered as evidence of a high temperature at the center.But knowing that the heat can only leave the earth at the surface, and ihat the motion of heat by conduction is extremely slow, we read ily see that the general temperature of the mass is at no great distance from the surface in this latitude, and when careful examination is made, I believe it will be seen that the temperature increases faster at one thousand feet deep than at two thousand feet deep, and that the temperature decreases as we descend int the earth in its equatorial part."

Steel Manufacture at Pittobura.

There is in Pittsburg an establishment called "Eagle Steel Works." manufacturing cas steel of all varieties, bar, shear, and sheet. They have three converting furnaces, five heating urnaces, and eighteen melting furnaces. They employ about sixty hands, many of them imported from England, and consume annuall seven hundred aud fifty tuns of iron, one-third of which is Swedish. The steel produced by these works has bcen repeatedly tested, and is found fully equal to the best English imported.

Dr. Luther, astronomer at the observator of Bilk, near Dusseldorf, Germany, has discovred a hitherto unknown star in the constellaPiscium" Pisces. It is to bear the name of " Piscium."

