S
 cientific Ameritur

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.
VOLUME XI. NEW-YORK, JANUARY 5, $1856 . \quad$ NUMBER 17.

Scientific American publiseed weekly
At 128 Fulton Street N. Y. (Sun Building.) BY MUNN \& COMPANY.
 Fodefhen $* \mathbb{C}$ Asent
 A very, Bollford \& CO., London M M. Fardissal \& Coo., Paris pal cities and towns in the United States.
Single copies of the paper are on sale at al cal stores in this city, Broollyn, and Jersey City. cal
TERMS--8Z a.year, -81 in advance and the rem
det in ixix moniha.

Woods of Australia.

The cedar of Australia is a most valuable wood, and almost the only kind used in joiners and cabinet work amongst the colonists for the last fifty years; it is said to attain ten feet in diameter. The white beech of the colonists, a species of Vitex, is a noble tree, rising eighty to one hundred and forty feet, whose wood is much prized for the decks of coasting vessels, of fine bright silvery grain, said never to shrink in floors (as do the majority of the colonial woods) after moderate seasoning. A magnificent species of Rhamnus has wood very close and hard, likely to prove ornamental, evidently a serviceable wood. The teak wood of the colony (Endiandra glauca,) a noble tree, has wood hard, close, fine, dark color in the duramen, with a powerful aromatic fragrance throughout, is said to be very durable, evidently a valuable timber. The rosewood, a species of Meliacea, possesses fine timber, durable and ornamental, and possesses an agreeable fragrance, the effect of an essential oil ; bedsteads made of it never harbor insects. - [London Building News.

Ameriean Nickel and Cobalt
Near Middletown, Conn., two mines containing the ores of the above-named metals have recently been opened. The metal bearing rock is believed to be of an unlimited depth; the ore is visible in grains throughout the lode, and amounts to about 10 per cent. of each metal. This shows that the lode is exceedingly rich, and when these mines are in full working order their product must have a beneficial effect upon the price of these metals in our markets. Great preparations have been made at the mines for smelting the ore, such as the erection of furnaces; steam engine, stampers, and ore separators.

London the Greateat Cuty
This is now the greatest city in the world, and far surpasses all the great cities of antiquity. According to Gibbon, the population of ancient Rome in the hight of its magnificence was $1,2000,000$; Nineveh is estimated to have had 600,000 ; and Dr. Medhurst supposes that the population of Pekin is about $2,000,000$. The population of London, according to recent statistics, amounts to $2,500,000,414,722$ having been added to it during the last ten years. The census shows that it contains 307,722 in habited, and 16,889 urinhabited houses.

Composition of Ganpowder.

Gunpowder is composed principally of saltpeter about 75 per cent., combined with charcoal about 15 per cent., and of sulphur about 12 per cent. Each of these ingredients, as articles of merchandise and commerce, have advanced in their respective markets, in some instances upwards of 100 and even 150 per cent. Saltpeter principally comes from Bengal and the peninsula of British India. Thesecircumstances have directed the attention of the scientific world towards the application of some other explosive powder or medium, which would be equally efficacious as gunpowder, and less costly. Gun cotton and fulminating silver have been the subject of experiment.

IMPROVEMENTS IN EXPANSIVE STEAM ENGINES.

The accompanying engravings representim-| same as those of any other double cylinder provements in the double-cylinder expansion expanding engine. The arrangement reprcsteam engine, known by the name of "The sented is supposed to be for a beam engine; Woolfe Engine," invented by John J. Johnston, the cylinders being placed side by side, and the Lawrence, Mass., who has taken measures to secure a patent.
Fig. 1 is a perspective view of the two cylinders, air pump, condenser, and the exhaust steam receiver. Fig. 1 is a side vertical section of the high pressure cylinder and steam receiver; and fig. 3 is a vertical section of the valve box, A, fig. 1.
The object of the invention is to obviate the back pressure of steam on the piston of the high pressure cylinder, and obtain a vacuum on the exhausting side of the piston of the low pressure cylinder, to increase the power of the engine, and effect a saving of fuel. A is the high pressure cylinder having the induction and eduction of the steam effected by a common slide valve, B fig. 3 , working in the steam chest, B fig. 1, which receives steam by a pipe, a, from the boiler. The eduction port, b, of this steam chest communicates by a side passage with a sccond steam chest, D, figs. 2 and 3 , at one side of C; the passage enters the steam chest, D , by a port, c. The steam chest, D , contains another port, d, from which a passage communicates with a pipe, e, leading to the condenser, E .
The ports, c and d, terminate in the seat of a slidepalve, F, which is capable of such a movement as indicated by two positions (one in dotted lines) in fig. 2 , showing a central section of the steam chest, D. From one side of this steam chest, or from any other convenient part of it, outside of valve F , a steam pipe, f, leads to the exhaust steam receiver, H -a vessel of about four times greater capacity that the low pressure cylinder engine, I. From this vessel a pipe, g, leads to the steam chest, K , of the low pressure cylinder which contains a slide valve and ports ; the eduction port or ports communicate by a pipe, h, with the condenser. The arrangement of the cylinders and the other part of this engine, and the connections of
the pistons are or may be substantially the
receiver, H, below them, the air pump, G, being in the same position relatively to the high pressure cylinder as the air pump of a common beam engine is to its cylinder, the condenser being placed beside the air pump and communicating by a passage, J.
The slide valve, B , of the high pressure cylinder, A, and the slide valve of the low pressure cylinder are intended to be operated by any common valve gear connected to them by rods, i and j. The slide valve, F, is intended to be operated by a cam or other like device on its rod, k, in such a manner as to move it very suddenly from the position shown in full to that shown in dotted lines in figs. 2 and 3 , which opens the port, c, and then releasesit, so that the port may be closed to the team chest, and brought into communion with the port, d, either by a spring, h, or by the pressure of steam, or the atmosphere. When the movement of the valve, F, to open the port, c, takes place, which is alw $1 \cdot \mathrm{ys}$ at the instant the eduction of steam from either end of the high pressure cylinder commences, a rush of steam from the high pressure cylinder takes place, through the port, c, steam chest, D , and pipe, f, to the exhaust steam receiver, H^{\prime}, but this is only of short duration, being stopped by the valve returning to the position shown in full lines, fig. 2, which directs the exhaust steam from cylinder, A, through the port, d, and pipe, e, to the condenser. The steam escaping from the high pressure cylinder to the receiver, H, expands to a pressure but a little more than that of the atmosphere, and at that pressure acts upon the piston of the low pressure cylinders, whose induction pipe, g, is always in communication with the receiver, H
By the great degree of expansion which is allowed to the steam escaping from the high pressure cylinder by the large size of the receiver H, put little resistance is offered by the escaping steam to the movement of the piston Mass.

In that cylinder, even while the cylinder is in ommunication with the receiver, H, which is but for a moment, as its eduction port, b, is very quickly closed to the receiver, and opened to the condenser by the upward movement of the valve, F, and in this condition the cylinder remains till the eduction from the other side of the piston commences. The reason for employing the large receiver, H , instead of exhausting directly from the high into the low pressure cylinder, is to relieve the piston of the high pressure cylinder of the back pressure of the exhausting steam, and to obtain a uniform pressure upon the piston of the low pressure cylinder throughout the entire stroke. In order to get the benefit of the vacuum before the piston of the high pressure cylinder during the whole stroke, the slide valve, B , of that cylinder may have a proper degree of lead, and the movement of the valve, F, may take place before the preceding stroke of the piston has terminated, and before the crank has arrived on its center. It will be readily understood by the foregoing description, that the valve, F, will have to make two movements for every one of the valve, B.
By removing the back pressure of the steam, as has been described, it is believed by the inventor that a great economy of power will be obtained. Other valves than those represented may be employed, while the principle of the improvements are preserved.
The slow exbau it, in other words the back pressure of the escaping steam from the high pressure into the expanding cylinder of a Woolfe engine, has always been a difficulty to its successful operation. This defect, it is presumed, is overcome by the improvement described in this engine. This class of engines has received but a partial trial in our country. The modifications and asrangements here illustrated and described may lead to its more extended use.

More information respecting the invention may he obtained by letter addressed to the inventor, at No. 8 Spring street Lawrence Mass.

[Reported Officially for the Scientific American.] LIST OF PATENT CLAIMS for tile week ending dec. $25,1855$.
Wrougur-Iron CaNNoN-John Grifhn, of Safe Har-
bor, Pa.: Having thus discovered that the mode of pre.

 Ropary Pusps-Thos, Crane, of Fort Atkinson, Wis.:
I do not claim the eccentric hub, D, and annular piston.
c, for they have been previously used.

 said pipes to le. for an instant, brought into connection
with each other during any portion of the revolution of
the piston, E, substantially as set forth. [Thisinvention consists in the combination of an ec-
centric hub, a:mrular piston, and reciprocatiug valve or cut-off, working withiu a cylinder chamber. Theprincipal novelty in the present improvement exists in the pe-
culiar operation of the cut-off valve, which opens and closes the eduction pipe at the proper moment. and prethey work without noise, and in many situations are pre ferable to any other.]
 parts of thia apparatus.
But 1 claim the contion of the receiver. Λ, and
rumps and D , provided with ocolks, a and g , in the man.
ner and for the purpose set torth.

 action given the sane, either as regards pressure in the
vertical dirccion, tranisferred to the top of tho tower or

 er, by the horizontal pressure of the latter on the roller s,
in contact with their bite. on or against the fixed bolt tur-
rounding the tower, substantialy as shown and described,
ior the purposes set forth.

 places, is avoided
 weikht, or by any equivalent means, the said sleeve hav.
ing perforations. ff out of line with the perforations of
the pipe, to allow the patient direct the conchtrated
rapor to any part of his back, substantially as set forth. [The apparatus constituting a vapor hath consists of a
small box-like compartment. in which the patient sits, a small box-like compartment, in which the patient sits, a
small,retort connected by a pipe with the box, a spirit
lamp. \&c., for heating the retort. If sulphur, for exam. ple, is placed in the retort. and the lamp applied, sulphur.
ic vapor will be produced and forced into the bath box. ic vapor will be produced and forced into the bath box.
The present improvement consists in applying a sleeve
pipe to the end of the retort pipe where it enters the pipe to the end of the retort pipe where it enters the
bath. This sleeve pipe is movable in different directions at pleasure, and is perforated with small holes. Its use is
to enable the patient to control the directionofthe vapor -move itup down the back

 nation with applyivg the galue shade or curtain thereto,
and os as ot wind upon a roller, and be wound thereon by
devices substantially as stated.

 pipes or channels down which it fills into the ground There is a peculiar arrangement of parts for throwing the
belto out of gear. resulating the speed, \&c. This machine sows in contiriuous drills or in hills, as desired. It is chea
in coistruction, simple, and not likely to get out of order.

 sifined
(Whe Wrine is is placed in lar large kettles, and the fire applied be neath. After the brine has become reduced to what in
called " "strong brine," and begias to crystallize, it is is lia ie to cake up and collect on the bottom of the kettle. I is in part kept clear by atten dants, who stir up the mix.
tuue, scrape it off, \&c. But in nearly y all cases there is tends to diminish its selling value.
The present inpprovement consists in the use of two ket
tles placed one inside of the other, a space being left be tween. The weak brine is boiled in the lower kettle
against which the fre is applied A After theliquid has boiled down into "strong brine" it is drawn offinto a vat where it remains long enough for its impurities to settle
Jt is then pumped into the upper kettle and crystallized no stirring being required, as no caking or discoloration
occurs. The upper kettle is heated by the hot brine be. ccurs. The upper kettle is he
ween it and the lower vessel.]
 hie machine so as to
is periectly shelled.

 meisured, or by which soundings may be
stopping or heavin to, as full set torth.
[This instrument, which the inventor terms a sounding
log, serves the purpose of the common log, viz, that of as certainins the speed of a ship. and also to take soundings
without "heaving the resselto." It consists of a buove and
and used as a log. the line is astened to the bottom of the buo with the lead hansing some distance below it. the other
end of the line being wound on a reel like the common log reel. When the lead and buoy are trown overboard,
te log remains stationary on the surcae of the water wherentis held upright by the weigh tof the lead, whic motion of the vessel, the same as the common log line
The only difference between this line and that of the common log is that this has colored marks in place of knots. as knots would interfere with the operation of
sounding. Whenthe instrument is to be used for taking soundings. the linine is allowed to or un over a pulley at the
bottom of the buov, the freedem of its movement being only very slightly checked by the friction of a spring.
The lead isdrawय by the line close The eead isdrawn by the line close up to the buoy, and
both are thrown overboard; the eessel still continues on its course, while the reel is held for the line to run out
the buy was thrown in, and the weight of the lead keepst he buoy
upright, and throws the line over the pulley of the buoy until the lead touches the botom, which is known by the buy turning oover on one eide. in consequence of the
wieight on longer acting upon it. When the buoy falls over, the friction of the spring on tho line is so much in
creased that the buoy remains fast on the line while 1 line

 TThe nature of this invention consists in providing each
of the legs of common dividers with a short adjustable secondary leg, jointed at right angles to the middle of the
primary less, and so arranged as toopen and close parallel primary less, and so arranged as toopen and close parallel
with the latter. When the dividers are opened or closed. to the distance of their points from the joint of the originallegs. If the points of the secondary legs are set at pre-
cise right angles th the cise right angles to the other legs, the secondary pointers
will move just one hall the distance of the other points. The secondary legs can be set so as to exhibit any desire
proportion with the set screw, \&c, for adjusting the angle of the secondary
legs, which facilitate accuracy. The improvement is a simple one, not expensive in manuffacture, and no doub
hishly wusful for draughtsmen.]

 back motiontotiberate the cock of

 cessive wires of the fili in and the warp.
[The object of this invent
[The object of this invention is to crimp the wires while fect this, a pair of crimping jaws, having their faces of a proper form to crimp the filling wires, are arranged in the
loom transversely to the warp. After a filing wire has been passed into the open whad. Ander a rought square with the warp by a half-way movement of the reed. these
ja ws close upon it and crimp it to the proper form, and
then then the lay makesa aseond movement the beatitup. The
crim ming of the warp is performed by the filling wires.
The crimpers have a reciprocating movementlaterally to The crimpers have are perpocormed movemementlaterally to the warp after every crimping operation, for the purpose
of making the depressionsin each wire opposite the eleof making the depressisns in each wire opposite the eete.
vations. in its predecessor and successor, as isequisite. to
enabe the wir wires to enable the exarp wires to pass severally over one filling

 by the parts by whichit is aitached and driven, substan
tially in the manner and for he purposes seforth.
(One of the greatest dififucuties experien ced in the con truction of cast-iron grinding mills, is to get the grinding plates stue. In the operation of cating they warp more
or less out of the proper level, owing to the shrink age of
the metal iu cooling. The slightest irrevulurity of the plates prevents them from doing good work : this is one of the chief objections totheir use. Mr. Stouts method
of connecting the plates is aq follows a after casting, they of connecting the plates is a follows: after casting, they
are placed in an oven and again heated ; they are then placed between heavy metallic disks and firmly clamped, the whole being then immersed in water. The
disks are perforated with holes, through which the water has access to the plates. The clamping renders them per fectly true, while the water imparts the necessary hard
ness.
This process appears to be easy, as well as effectual, for the purposes intended]

$\underset{\substack{\text { Arin Ma } \\ \text { Britain. }}}{\rightarrow+.}$
Heretofore, the manufacture of army sma fre-arms in England has been carried on with. out any government system, but learning of the superior modes of constructing army mus kets and rifles, Uncle John has shown good sense in adopting our system. About two years ago a commission of British officers and mechanics were sent out to inspect our armories, and make the necessary arrangements and contracts for American machinery. They had free access to our establishments, and, as we learn by the Springfield Republican, they engaged James M. Burton, chief engineer and mechanic at the Harper's Ferry, (Va.) Armory, to take a like position in the new English armory, and he is now in that country. They also ordered complete sets of the machinery in use at our armories. Robbins \& Lawrence of Windsor, Vt., were employed to build some 100 "milling machines," used to cut the gun locks and execute the other iron parts of the gun.
The intricate machinery for the manufacture of the gun stock, was entrusted to the Ames Manufacturing Company, of Chicopee. This has just been completed and dispatched to England. It consists of 25 different machines, 3 of which are duplicates. Oramel Clarke, one of the best workmen in the stock department of the armory, has been employed to go to
Europe, and take charge of the machinery and its operation.
The new government armory of England is located at Enfield Lock, nine wiles north of London. It is intended to employ 800 operatives, and turn out 500 muskets daily. A contract for 25,000 rifles is now being filled at Windsor, Vt., and Hartford, Conn., for the British Government.

Great Eugineering Wouks in India The Government have recently constructed an immense weir across the Godavrey river in Madras, for collecting and distributing water for the purposes of irrigation. Canals or con-
duits are built, to distribute the water for irri duits are built, to distribute the water for irr The water will be supplied at the rate of 200 , 000 cubic yards for about four dollars, or about one-tbirtieth the price which it costs the natives to draw it by bullocks-according to the old plan. Severe droutbs take place in sections of the Madras territory every few years,
and famines are sure to follow. This great and famines are sure to follow. This grea
work will be the means of benefiting the peo ple on the delta of that river beyond all calculation, as it is believed that their crops will hereafter be multiplied seventy-fold by such an abundant water supply.

There has been discovered on the farm of Mr. James Peage, near Staunton, Va., an apparently inexhaustible supply of nitrato of lime. Some specimens, on examination, proved to contain large portions of pure saltpeter, and in all the nitrate is strongly evident.-[Ex.
[The nitrate of lime occurs native in calcareous soils, and in old mortar. It is a white soluble salt, and may be decomposed by the
carbonate of potassa. It is sometimes used as a source for obtaining niter.

