THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Scientific American

 published weeklyAt 128 Fulton Strest. N. Y. (Sun Buildings.) BY MUNN \& COMPANY.

 Avery, Bellorod \& Co., London MM. Gardissal is Co..Paris
Kesponsibe Agent may also be found and the princiResponsible Agents may also be found in
pal cities and towns in the United States. pal cities and towns in the United states.
Single copies of the paper are on sale at all cal stores in this city, Brooklyn, and Jersey City.

Water Purifler for Steam Boilers.

The accompanying engravings represent the apparatus for depositing the mineral and other matter contained in water, for which a patent was granted to Gustavus Weissenborn, of this city, on the 16 th of January last.
Fig. 1 is a longitudinal vertical section of the apparatus. Fig. 2 is a horizontal section through the large cylinder, A B , and fig. 3 is a plan view of the spiral exhaust chamber. The nature of the invention consists in the method of depositing mineral or other foreign matter held in solution in water, by heating the hard water by steam, and causing it to trickle or flow over an extensive surface of stones, twigs, and similar substances, and thus deposit the earthy or mineral substances in the water by the agency of heat, and the great extent of surface over which the water is rade to flow. b, fig. 3 , is a pipe for introducing the steam. e is a pipe through which the hard water to be purified is injected in fine jets. $f f f f$ is the spiral channel through which the commingled water and steam pass to the center, 2 , where they enter, in a fine shower, into the large cylinder, A B, and through brushwood, H , in fig. 1, between which and the sides of the cylinder, an open space is preserved, by four upright pieces of wood, at equal distances apart, and kept in their position by iron rings, 2 . The heated water flows from the brushwood into a sheet iron case, K , containing horse manure, through which it passes into the nterior cylinder, which is a brass sieve, K^{\prime}, thence to the lower receptacle, which is placed in the ground, and can be made of wood. In this the water ascends fromthe bottom through pebbles or small stones, L , as shown by the arrows, fig. 1 , then falls and rises again through pebbles in separate compartments, from which it passes to the reservoir, and is thence drawn off by a feed pump attached to the pipe, M. C is an exhaust relief pipe; g is the cover of the apparatus, and v represents a float to regulate the admission of water.
This is a close apparatus, and it will be un derstood that it is connected with a steam en gine, the exhaust steam of which is injected into it, to heat the cold hard water which is admitted through the pipe, e, as has been described. The object of it is to deposit all the matter held in solution in hard water, on the brushwood, pebbles, \&c., so as to render it pure previous to its being used in the steam boiler, and thus prevent it forming incrustations therein, the very principle recommended some years since in our columns to be employed in the limestone districts of our country for steam boilers, and which Mr. Weissenborn has here ingeniously carried out into practice. The annexed engravings represent an apparatus, designed for Messrs. Stillman Allen, \& Co., of the Novelty Works, this city for an engine of about 100 -horse power, and is about 2 feet 8 inches in diameter, and 5 feet high, with a tank or reservoir below ground of 5 feet long, 3 feet wide, and 2 feet deep.

The pumps force the hard water into the purifier, and steam from a boiler, or the exhaust steam from the engine is admitted, in sufficient

WEISSENBORN'S PATENT WATER PURIFIER FOR STEAM BOILERS.

point. These come in contact in the upper contained in a coarse mat or sack, then falls part of the apparatus, at the entrance to a coil and rises through the pebbles, L, placed in two of pipe, which may be of 20 to 40 feet in or three compartments of the tank, from which length, and is arranged in the spiral form, to it flows freed of its mineral matter, as deeconomise space, and afford greater friction scribed, into the reservoir, and thence by the than a straight smooth channel. The wateris feed pump is conveyed to the boiler. Any suradmitted through a sliding strainer, which di- plus steam from the apparatus is carried off to vides the stream into numerous fine jets, thus the air, or to a condenser.
insuring a more complete commingling with At each stage of the process, a portion of the steam, the force of which drives it with the salts contained in the water is set free, and great velocity through this winding channel; deposited in the purifier, chiefly in the spiral thence it runs to the perforated basin, where it channel, and upon the twigs and stones, or is showered over and trickles through the whatever substitutes for them it may be most brush; from this it filters through horse ma- convenient to use, and also as a muddy precipnure, charcoal, or other suitable substances itate at the bottom.

Due provision is of course made for opening |ime and magnesia. Heat expels from water the different parts of the apparatus, to remove its free carbonic acid, without the presence of the mineral and earthy matter from tinie to which the carbonates of lime, \&c., are insolu-ime-about every three or four months, we are old. ble, consequently, when the acid is expelled, these matters are precipitated. The evaporaThe most common incrustations formed in tion of the heated water, causing a concen-
excess of the power of the water to hold them in solution, and also tends to the same results -their deposition. This is the philosophy of the process. But these agencies alone are insufficient to effect the separation of all the mineral matter before the water enters the boiler. To complete the process, the violent agitation of the water, its subdivision into small streams, and, in this state, meeting with, and percolating or trickling through, a mass of material presenting a great extent of surfaces for contact; all have to perform their part. As a further security for the desired result, horse manure, charcoal, or other matter, may be used, the object being, by the operation of their chemical affinities, to precipitate any solid matter which may chance still to have remained in solution
The joint action of these principles purifies the water of its incrusting salts before it comes to be used in the boiler, leaving them deposited in the apparatus, where they are of no detriment.
This Incrustation Preventor requires but little space and attention, and it may be made quite a neat and ornamental attachment to the engine, while its utility as a heater is also selfevident. The impracticability of using the ordnnary heaters for hard water, on account of the frequent bursting of the feed pipes from incrustations, renders this apparatus very valuable for some districts in our country. At the same time its services as a condenser are also deserving of attention. The form of this apparatus can be varied to suit the requirements of parties using it. The manifold evils resulting from the formation of incrustations in steam boilers, are well-k nown to all our readers, and need not be further alluded to at present. An efficient and simple remedy has long been a desideratum. Mr. Weissenbornwho is a mechanical draughtsman and engi-neer-has devoted much attention to the subject, and has invented this apparatus, and practically tested it. It is now attracting considerable attention in this city, and is here presented so that the public may have an opportunity of judging for themselves of its merits. More information may be obtained of E. W Sargent, Delmonico's Hotel, Broadway, N. Y. Sallueter.
Dr. A. A. Hayes, in a communication to the Boston Atlas, suggests a plan by which the present scarcity and high price of saltpeter may be in a great measure obviated. He proposes to import nitrate of soda, which is a natural product, found in the district of Atacama, South Peru. He says, "As the price of nitrate of soda at the port of shipment, is to a large extent made up from the cost of fuel consumed in refining (the country is a desert,) and the expense of transportation, it is apparent to every one, that under judicious arrangement, thes e charges might be much reduced, and either the crude or refined article delivered at the shipping port, at a cost muchless than at present. During the last ten years, the cargo price of nitrate of soda at this port has not much exceeded two-thirds the price of the first quality of saltpeter, and it is now less than half that price. Nitrate of soda, in its dry and pure state, is composed of anhydrous nitric acid $63 \cdot 53$, and anhydrous soda $36 \cdot 47$ parts in a 100. As the nitric acid in 100 parts of saltpeter weighs 53,21 , one hundred parts of nitrate of soda should afford nearly one hundred and nineteen parts of saltpeter, by exchanging its soda base for an equivalent of potash. This change can be easily effected by means of salts of potash, when salts of soda are produced on one hand, and saltpeter on the ther. Salts of potash abound in wood ashes, and where wood ashes can be obtained, or any salt of potash cheaply, we may at once com pete with India in the production of saltpeter for home consumption."

Er

LReported Offcially for the Scientific American.] Issued from the United States Patent Oilsce FOR TEE WEEK ENDING DEC. 11, 1855 .
BLEACING Ivory - Wm, M. Welling.of Broklyn, N

 separate rods, b bi, b, b, for the several filds of the cloth
tile said rods being aranged and operated to fall acros
the successive layers of the cloth as they and
 filding t
fingot
forth.
forth
 [The cloth passes from a roller on which it is wound
through a reciprocating carriage ; the latter moves back andforthover a horizontal table which receives the cloth,
at each movement of the carriage a hinged rod drops from ths machine into the fold made and remains in the crease
until the whole piece is finished; there is a rod for each crease; when ths piece is all finished it is drawn off fron the rods, and the latter thrown back for use again. The
machine works with certainty : it is quite simple in it success in all establi, hments, where larse quantities of
oods are to be put up. By the attachment of a register goods are to be put up. By the attachment of a register
ingappar: t ts the exact 1 nngth of the cloth folded might ing alpar: is the exact 1 nngth of the cloth folded mig
be uneringiy exhibited. B. B. Babbitt, Esq., of Provi
 Fouvinin Inkstand-C. T. Close, of New York City.
I clainthe arrar gement and combination, substantilly
asispecified of the upper tuke or mastage, b, connecting

 gauge tube and be got at for the purpose of cleaning, when
the glassor blasses are remoted out te othr side
Nor do I wish to be understood as limiting myself to the The glass or glasses are removed out the other side
Nor do I wish to be thderstod an limiting myself to th
special mod of construction specified, as other equivale
 water in steam beilers with an aperture provided with
conver glass. presenting the convex or arched durf tace
the pressure in the tube, substantially as, and for the pur
pose specified.

 a movable se gmental cap, substantially as set forth.
[Thisinvention consists, first, iita a volute spring con posed of a flatstrip of metal arranged to receive the force
or weightin a direction parallel with the axis of the vo-
lute A weaker spring of any suitable form and materia or weightin a direction paraller with he axis of the vo
lute A weaker spring of any suitable form and matoria
is introduced into the center of the volute spring, for the purpose of giving a support to both ends of the volute a
$\mathfrak{t} e$ same time. and thereby effectually preventing the oc currence of a fracture through anysudden oo o 1 sfion
Tho inve.ation consist, seconily, in encasing the volute
sprins within a double bed, which. while it yiolds to every sprins within a double bed, which, while it yiolds to ever
movement (f the spring. forms an effient guide to pre movement (the spring, forms an encient guide spre-
vent any lateralmovemntand also protects the spring
from dust. At the late fair at the Crystal Palace, we saw some tests of thi, invention made, which satisfied
it was an important and valuable im provement.].

 acesof the tier next above, for the purposes expained,

 Bedsreans-Benjn. Hinkley, of Troy. N. Y.: I do no
claim the cross springs as a means of support.

 around the wick tube, and secured at one end to the cap.
and at the oheher to the screw plate ce cor in innyothor con-
venientiocaly, where the cap is tighty drawn down
over the wick, as described.

torthn
thin ab
which
war

 that the force is continued until the moment of discharge. The exit of the water, which is permitted by the raising of he buckets, is free and quick, without any drag. It is $t \mathrm{e}$
lieved that the wheel will afford a greater per centage of power than
expensive.]
Corv Shel Lers-James J. Johnston, of Alleghany
City, Pa. I claim the secondary cleanery or pickers.t.
revolved around the cob, as the cob is projected by the Inain eylinger, c, through the opening in the case, a. of
the machine sulstantially inthe manue rand for the pur
pose described.

 by tho stoppers, x. the pricking and stamping of the
heels and soles, so cut out by the awls, dand the stamp

 Processes ror CaLico Priving-Robt. Prince, of
Lowell, Mass. and Ambrose Lovis. of Boston. Mass. . We
 and we are also aware that silicate of lime has been used
for the same purpose We disclaim the use of these eub.
stances. Confing ourselvest the use of the silicate. in
 containing foreign neutral salts, and the use of this com-
pound with crobonate of oda and ne tral salts, in dung-
ing operations, substantially a s set forth.

 [The nature of this invention consists in the employ and also to the horizantal frame on which the saw frame works, for the purpose of causing the saw frame guides to
be moved laterally in a perfectly vertical position, and a the same time enabling the horizontal frame to work up
and down in a horizontal position. The machine is intended for simultaneously sawing two sides of a block of mar Buckles-Sheldon S. Hartshorn, of Orange. Conn. :
claim constructing the tongue, s, and loop of the buckle in

 of cloth or mettif, , a and a series of el eastic ba ads, arranged
ond applied, and so as to operate together, su bstantially as
set forth.
 no d desire to claim the exclusive use of oblique circu
lar maws for cutting brooves, as such are well kuow.
 CorN SheLLers-J. P. Smith. of IIummelstown. Pa.:
Iclaim the construction of the frustums, D and C., with coir winding wings, dd, upon both and cross projections,
c. upon one. substantially in the manner and for the pur-
poses set forth. c. c. upon one, s.
poses set forth.

 tracer which carries the block of wood to be carred, by
meansoof one system of pentagraph hevers, as his is de.
scribe in apatent granted me on the Uuthday of April,
139. But I claim combining the tracer with the table which
carries the block of wood to be carved. by means of two systems of pentagraph levers operating at rifht angles
with ach oher. subtantially oa descriced, whereby the
wis block to be carved will be directed and presented to the
action of he cutter, in much manner as todetermine the
configuraion as well
tina vert as set forth.
 correspondilisp parts of the steam chstst. bet ween whichit
works. of taprang form laterally and itinthe wive to
its rod, in such an manner asto be capable of lateral move.
 In carrying out this invention the back of the valve is
fitted to the cover of the steam chest, between which and its seat it works steam tight. The improvement consists
in a certain method of compensating for the wear of the alve and the two faces between which it works. There
is an arrangement whereby the valve is more perfectly made tapering in a transverse direction, but in a longitu dinal direction its two faces are parallel. By thus taper ing the valve, one of its sides is caused to have a greater
area than the other, and the steam, by exerting a greater area than the other, and the steam, by exerting a greater
pressure on the larger area., tends to force the valve beways tight. It is a good improvement.]

 bon,"
SIX Prane Rox Stion
Zoiner, of Cincinnati, 0 Coiner, of Cincinnati, O.
Conow Srove-Connad Harris \& Pa
Cinoinnati, O. Design named "Kanzas." Cinoinnati, O. Design named "Kanzis."
Strap IIrvges-Eroch Woolman, of
Note-About one.third of all the American patents granted latt week were obtained throush the Sci n tific
American Pitent Agency. Several of the grants ane for American Patent Agency. Several of the grants are for
inventions of a very valuable and important nature for inventions of a very valuable and important nature, from
which rapid fortunes will be made. To those who are whin rapid le vate themselves in the world, pecuniariily,
longing to
we say invent, invent, invent! There is not a surer way to business and fortune for individuals who are without capital, than patents. A good invention ge nerally yields
a cash r turn, and is often of more value than a California a cash r rtur
gold mine.
gold mine
The pre
The presentis an unusually favorable time for applying
for pa ents. The Hon. Charies Mason is again in power, and the business of the Patent Office is leing once more conducted with prompt ness and vigor. Applicants will
not have to wait so long as formerly, before the result of Prince Albert on Sclence and Common Sens
On the 22d of last month, at the laying of the corner-stone of the new edifice of the Birmingham Institute, England, Prince Albertwho was present, and whose health was drank at the dinner given on the occasion-made a speech, in which he, very sensibly, never alluded to the war, nor to political matters, butex clusively to the objects for which the building was designed, namely, scientific instruction. He said it was a pleasure for him to participate in a work of worldly wisdom in that great town, because it was one of the first public acknowledgments of a principle daily forcing its way among the people of Britain, and destined to play an important part in its future developement (and the world in general,) viz., the introduction of science and art as the conscious regulators of human industry. The following short extracts from his speech are worthy of being engraved in letters of gold
"In all our operations, whether agricultural or manufacturing, it is not we who operate, but the laws of nature, which we have set in operation. It is, then, of the highest importance that we should know these laws, in order to know what we are about, and the reason why certain things are, which occur daily under our hands, and what course we are to pursue in regard to them. Without such knowledge we merely go on to do things just as our fathers did, and for no better reason than because they did so-or improve upon certain processes by an experience bardly earned and dearly bought, and which, after all, can only embrace a comparatively short space of time, and a small number of experiments. From none of these causes can we hope for much progress; for the mind however ingenious, has no materials to work with, and remains in presence of phenomena, the cause of which are
hidden from it. hidden from it.
But these laws of nature-these Divine laws-are capable of being discovered and understood, and of being taught and made our own. This is the task of science; and while science discovers and teaches these laws, art teaches their application. No pursuit is, therefore, too insignificant not to be capable of becoming the subject both of ascience and and art.
No human pursuits make any material progress until science be brought to bear upon them. We have seen many of them slumber for centuries; but from the moment that science has touched them with her magic wand, they have sprung forward and taken strides which amaze and almost awe the beholder Look at the transformation which has gone on around us since the laws of gravitation, electricity, magnetism, and the expansive power of heat have become known to us! It has altered our whole state of existence-one might say the whole face of the globe! We owe this to science, and science alone; and she has oth er treasures in store for us, if we will but call her to our assistance. It is sometimes objected by the ignorant that science is uncertain and changeable; and they point to the many exploded theories which have been superseded by others, as a proof that the present knowledge may be also unsound, and after all not worth having. But they are not aware that while they think to cast blame upon science, they bestow, in fact, the highest praise upon her. For that is precisely the difference between science and prejudice; that the latter keeps stubbornly to its position, whether dis proved or not, while the former is an unarrest
able movement toward the fountain of truthcaring little for cherished authorities or sen timents, but continually progressing-feeling no false shame at her shortcomings, but, on the contrary, the highest pleasure when freed from a error, at having advanced another step to wards the attainment of Divine truth.
Wc also hear, not unfrequently, science and practice, scientific knowledge and common sense, contrasted as antagonistic. A strange error! For science is eminently practical, and must be so, as she sees and knows what she is doing; while mere common practice is condemned to work in the dark, applying natural ngenuity to unknown powers, to obtain a known result. Far be it from me to under value the creative power of genius, or to trea rewd common wose as thousenwihle ttrss st knowledge. But nobody will tell me that the same genius would not take an incomparably higher flight if supplied with all the means which knowledge can impart, or that common sense does not become only truly powerful when in possession of the materials upon which judgment is to be exercised.
No pursuit is too insignificant not to be capable of becoming the subjects both of a science and an art. The fine arts, as far as they relate to painting and sculpture (which are sometimes confounded with art in general.) rest on the applicatiou of the laws of formand abor, and what may be called the science of the beautiful. They do not rest on any arbitrary theory on the modes of producing pleasurable emotions, but follow fixed laws, more difficult, perhaps, to seize than those regulating the material world, because belonging partly to the sphere of the ideal and our spirtual essence, yet perfectly appreciable and teachable, both abstractly and historically from the works of different ages and nations. (Cheers.)

Recent Foreign Inventions.
Joining Slabs of Sheet-Iron-A patent has been granted to Mr. Bertram, a practical en ginecr, employed in WoolwichDockyard, Eng. as foreman. His invention consists of a pro cess of firmly joining together slabs of sheet iron work for the purpose of making boilers, building ships, and erecting bridges, \&c., without the use of rivets. This novel method of welding the iron instead of joining it by the rough means hitherto in use-that of riveting -is carried out by fusing the two edges of the plates to be adhered, and striking them simultaneously on both sides. By this means the structure is rendered materially lighter, and much stronger. Some experiments have been tested by order of the Lords of the Admiralty, in presence of the officers of the Dockyard, who are authorized to report thereon. The re sult of their deliberations will shortly be made known. It has been hitherto considered impossible to make an unlimited surface of iron; hence the system of riveting has been so far perpetuated.
A New Expansive Valve Motion for Stean Engines was lately described at the Institution of Mechanical Engineers, by Mr. G. M. Miller, of Dublin. In this motion a single eccentric only is used on the driving axle ; this works the rod of one of the valves direct, and the rod of the second valve is worked by the eccentric through the intervention of a loose ring on the driving axle, having two arms projecting at right angles to each other, to one of which the second valve-rod is attached, the ther arm being connected with the eccentric By this means a fimilar motion is given to both valves, but corresponding to the relative positions of the two cranks at right angles to each other. The eccentric is molded upon a transverse slide, which is capable of being moved backwards and forwards across the axle by means of a handle, answering to the ordinary reversing handle or lever, and acting hrough the medium of a pair of racks and pinions. By moving the transverse slides the throw of the eccentric is altered or reversed, thereby enabling the engine to be worked expansively or reversed. A model of the new motion was exhibited, showing it as applied to locomotive engine; and the particulars were given of the successful working of the new motion in two engines upon the Great South ern and Western Railway of Ireland.-[Rail way Gazette, London.
\square

Steam Engines-Mr. T. W. Bunning, C. E., of Nowcastle-on-Tyne, has patanted some improvements in steam engines, which consist of 'an arrangement of trunk-engines in which the steam from the boiler is only admitted under the piston to perform the up-stroke, while it is $\mathrm{m} d$) to enter through a slide of a particular construction into the upper part of the cylinder, there to work expansively and perform the down-stroke.
Furnaces-T. R. Crampton, C. E., of London, has patented an improvement in locomotive and other boiler furnaces, which consists in employing a series of flat bars arranged transversely in a furnace of a steam boiler, one bar below another, and somewhat forward of each other, thus producing a shelving grat ing, with spaces for the passage of air horizontally between the bars. At the lower part of such series of shelving bars is a series of ordinary fire bars, which receive the well-ignited fuel descending down the shel ving bars, and which are so connected with an axis as to allow flre to be dropped upon them when desired.
sursting of Krupy's steel and Iron Canon.
On page 98, in our list of claims of the 27th ult., two of the claims were embraced in a patent granted to Alired Krupp, of Essen, Prussia. The first was for the manufacture of cannons from solid picces of steel, and the second was for the surrounding of cannons made of cast steel with cast, or wrought iron, or gun metal.
We have learned, by recent foreign exchanges, that on the 19th of lastmonth, at the Royal Arsenal, Woolwich, England, a number of scientific gentlemen assembled to witness the testing of one of these guns, a 68 pounder, manufactured by Krupp, in Prussia, for Capt. Creuse, royal engineer. It was supposed to be the largest piece of cast steel ever manufactured, and weighed between three and four tuns. The chemise, or outward covering of cast iron brought its weight to nine tuns. The proof charge was 25 lbs . of gunpowder, one wad, and one of the projectiles made by the inventor. and intended for service with the gun. This shot was of a conical shape, about two feet in length, weighing $2 \mathrm{cwt} ., 1$ quarter, and 7 lbs. The quantity of powder used was less than the proof charge of an ordinary 68 pounder by 3 pounds. At the first discharge the gun burst, scattering the fragments high into the air. The sensation of the result was very great, as some supposed it capable of resisting anyamount of powder. Its declared value was $£ 1500-\$ 7500$

Great Steamship Lannehed.

On the morning of the 10 th inst. the new teamship C. Vanderbilt was launched from the yard of R. Simonson, at Greenpoint, amid the acclamations of a dense crowd numbering some thousands of persons, some of whom had come from a great distance to witness the descent of this noble vessel into the briny element. The launch was very successful. The vast size of this ncw leviathan of the deep was not properly appreciated because of her fine lines, until she was about to be towed down to the dock to get on her sheathing. Four tolerable sized "tugs"-two on each side-appeared beside her, like dog-tish beside a whale. The \boldsymbol{C}. Vanderbilt is designed for the Atlantic trade between this port and Havre. She is built very strong, and of a capacity amounting to five thousand tuns. Her engines will be of the common over-head beams. They are nearly finished, at the Allaire Works, and are of huge proportions. The Vanderbilt is the largest steamship yet launched on our continent Granite Dust
A correspondent of the Washington Intelligencer says :-"While examining the granite quarries at Northbridge, Mass., a few days since, I had a conversation with the workmen who were dressing out the stone, in reference to the dust that they were rapping off with a flat piece of board from the face of the stone they were hammering. The dust is reduced in the hammering of the stone to an impalpable powder, and will float in the air. I said to them that it would be well to try the vegetating powers of this granite dust in a hill of corn. They replied that it had been used in gardens and on grass lands with great success, and that it was equal to the best manure. The granite rocks may be ground to an impalpable
powder and used as a fertilizer. Feldspar, component of granitc, yields potash, and may fertilizing power."
French $\overline{\text { single Hurizontal steam Enkints. }}$
Wm. Fairbairn, of Manchester, Eng.,-the famous engineer-in his report of the steam engines on exhibition in Paris, states that the horizontal single cylinder engine is gaining ground on the double cylinder vertical engine He attributes this to its being both cheape and more compact. At one time the great ob jection to horizontal engines was the exces sive unequal wear of the piston upon the lowe side of the cylinder ; but owing to the accuracy with which pistons, are now made, the wear and tear upon cylinders is greatly reduced. In France, Mr. Fairbairn states, the consumption of coal per horse power, in the most commo steam engines, is very low-only about three pounds, and the makers of them guarantee that they will not exceed that amount. The steam is used at about fifty pounds pressure on the square inch, and is cut off at one-fifth of the stroke, and so far as economy of fuel is concerned they are equal to an engine with two cylinders, the one for high pressure, and the other for expansion-the well known Wolfe principle, which has been held to be the most economical of all. Mr. Fairbairn states that the improvements in French engines, although well known in England have not been carried out to the same extent as in the forme country. He therefore awards high praise to the French engineers, and certainly, when we consider the economy of fuel- 3 lbs . of coal per horse power an hour-in their engines, we must call upon our own engineers to spur up and uselcss fuel than they heretofore have been accustomed to do.

Encli h Scientific Journal.
We understand from undoubted sourcesthat new scientific and mechanical journal is about to be established in London, adopting the Scientific American as the standard. We are not permitted to announce the names of its projectors, but they are men of enterprise, and occupy high positions in the scientific circles of London, with almost unequalled advantages ior a work of this character. So far as we know-and we believe we understand the subject thoroughly-there is not a first-class journal of the kind in London. They are generally monthlies or weeklies, without force or energy, and the opening for a good journal is no doubt, very encouraging.

Terrible Effecta of Conical Balls.
An English surgeon-Mr. Longmore-writing to the London Daily News from the Crimea, says :-
"The experience of French practice, as well as our own is, that patients scarcely ever recover with compound fractures of the thigh, caused by rifle shots in the upper part of the limb, whether amputation be performed or not. This has led both the French aud ourselves to make some experiments in cutting out some portions of the bone broken and killed by the injury, leaving the limb on; hoping that while one source of irritation is thus removed, and a less severe shock to the frame is caused than by lopping off the whole limb near the hip, nature mayin time restore the continuality of the detached ends by throwing out new bones. There have not been sufficient cases to warrant conclusions on the propriety of this proceeding in the thigh. In no previous war has the human frame been shattered by missiles projected with such force as in this, and the conical form in the balls has caused a considerable difference in the kind of fissuring and splitting up of the bones."

Frante's Wind vill.

In the description of the Wind Mill in No. 13, Scientific American, it was stated that Phillips \& Tritle were the assignees of the patent. The patent was assigned to Mr. John Phillips solely, by the inventor,-Phillips \& Tritle manufacture the Wind Mills.

French grape juice, which ferments spontaneously in contact with the atmosphere, if put up in a glass jar, free from contact with the Gay Lussac.
-

