THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

VOLUME XI.

Scientific American , pUblished werkly

At 128 Fulton Street, N. Y. (Sun Buildings.) BY MUNN \& COMPANY.

Azento. \quad Dexter \& Bro. New Yor
 Responsible A ents may also be found in all the princ Single conies of the paper are on sale at all the periodi
al stores in this city, brooklyn, and Jersey City.
TERMS.- $\$ 2$ a.year, $\mathbf{- 8 1}$ in advance and the remain $\underset{\text { TER }}{\text { TE six menthe }}$

Improvement in Sewing Machines.
On the 9th of last month (October) a paten was granted to C. J. Cowperthwaite, of Phil adelphia, Pa.,for the improvements on Sewing Machines illustrated in the accompany engravings.
Fig. 1 is a side elevation of the machine fig. 2 is a front view of the same; fig. 3 is plan view of the shuttle race and part of the feed motion. Fig. 4 is a side view of the weighted trip lever on a larger scale than the other figures. Fig. 5 is a section of th spool. Fig. 6 is a diagram illustration, which will hereafter be referred to. Similar letters refer to like parts.
The nature of the invention consists of two parts; first, in the employment of a weighted trip lever to apply the necessary pressure to confine the cloth to the surface, by which the feeding morement is imparted to the cloth Second, in having a certain oblique arrangement of the shuttle race relatively to the line of the feeding movement of the sewing needle whereby the stitches formed by the needle and shuttle are produced in line with each other. A is the table of the machine. B is the needle bar, carried along to operate the needle, a. C is the lever, and D the cam which operate the needle bar. E is a thin ring o metal, the external face of which imparts the feed motion to the cloth; it is therefore ser rated. F is a wheel fitted loosely to the interior of ring, E. It has about a quarter of an inch of its upper part cut away, to make room for a fixed sector, G, the arc of which fits to the interior of the ring. This sector is secured close under the table of the machine, and is so much smaller than the omitted portion of the wheel, F, as to allow the latter to be moved a little way upon axle b. The positions of wheel F and sector G are such, that the outer surface of the ring stands just level with, or slightly above the table, A, through an opening, in which it works like the feed wheel o many sewing machines. The wheel, F, car ries an arm, c, which projects outwards beyond the ring, and has a lever dog, α, pivoted to it, the point of which is in contact with the outer face of ring E , and the opposite end rests upon the front end of lever H , which hangs under the table. The back end of lever H, is depressed at every revolution of a cam, e, on the principal shaft, I, and by that means its front end is thrown up and caused to act upon the lever dog to make it confine the ring, E, to the wheel, F, and having done so, to move the wheel upon its axle, b, thereby moving the ring to produce the feed movement of the cloth the ring is only allowed to move in the proper direction for this purpose. It is prevented from moving in an opposite direction by a spring dog, f, attached to a brace, g, that extends from axle b, to one side of the stand of the machine-the dog clamping the ring to a projecting piece, f^{\prime}, which is secured to the back of the brace, g, and stands within an opening, g^{\prime}, in the periphery of wheel F . The ring, E being retained in this way, the wheel F , is allowed to be returned alone, to be ready for the next feed movement by a sping, h, con necting an arne, i, of itto the table. The lengt of fced movement may be regulated by a screw

COWPERTHWAITE'S PATENT SEWING MACHINE.

applied either to the arm, i, or the lever, H J is an upright bar fitted to slide in the stand of the machine, and provided with a bent foot , at the bottom, to bear upon the upper surface of the cloth, and confine it to the surface by which the feed motion is imparted. This bar, or its equivalent, is rigidly secured in sewing machines, to confine the cloth. The common method, however, is to use a spring to press down the bar to confine the cloth. This bar requires to be raised to adjusta piece of cloth to start the work, and when a defect in the seam has to be remedied; when raised, it requires to be secured by a set screw. On account of this raising of bar J, the needle bar cannot be allowed to descend within some distance of the table, for if it were set in motion with the bar, J, raised, it would strike and bend or break off the foot. For this reason, the needles of common sewing machines have to be made very long, and their great length renders them weak. To obviate this difficulty, and allow the needle bar to approach near the table, and thus allow a short needle to be used, the weighted trip lever, K , is employed to give pressure to bar, J , and also to hold it up as long as it is not struck by the needle bar in its descent, and then to let it drop. This weighted trip lever, K, fig. 4, ha two curved slots, $k l$, in it. The former slot is nearly horizontal at its back part, and from there it gradually descends until it is nearly vertical at the front; it receives a stationary fulcrum pin, m, attached to the stand of the machine. The slot, l, is in the form of an in erted arc, and receives a pin, \boldsymbol{n}, which is secured near the upper end of bar J. This lever K , has also a curved inclined piece, o, projecting from its under side. When the bar, J, is down, the lever, K, occupies the position shown in full lines, figs. 1 and 4, the pin, n, at that time occupying the extreme back of slot, k, the lever being prevented from moving backards on the pin, n, by the projecting piece, 0 on its under side, it being in contact with a
fixed stop piece, p, attached to the stand of the machine. In this condition the lever, K , gives the bar, J, such an amount of downward pressure as is due to the weight, q, on the lever. To raise bar J, the operator takes hold of the weighted end of the lever, and pushes it upwards or backwards until the bottom of the projection, o, on the lever arrives at the top of the stop piece, p, as shown in dotted lines, figs. and 4 , by which movement the character of the lever is changed from one of the second to one of the first order with p for a fulcrum; and instead of pressing on bar J, it holds it up. When the lever, K, is in this position, with the bar, J, raised, if the foot should be struck by the needle bar, and commence to be pushed down, the slot, k, would move down the pin, m, and, by moving a very little distance, would throw the lever bodily forward, and throw the bottom of the projecting piece, o, off the top of the stop piece, p, allowing the inclined back side of the projection to slide down the stop piece, p, and the slot, k, to slide all the way down the pin, m, bringing down the bar, J.Another quality of this lever, K, is, thatitdoes not readily yield to any sudden upward impulse which the bar may receive, consequently, if any accidental knot or kink occurs in the thread under the cloth, the foot will not yield to the next upward movement of the needle, but will still confine the cloth to the table, perhaps causing the thread to break, but doing no injury to the needle, as is often done with knots and kinks in machines where springs are used to confine the cloth.
L, fig. 3 , is the shuttle race. It is parallel with another line, forming angles of about 105 degrees and 75 degrees with the line, 89 , in which the cloth moves, or with the plane of revolution of feed ring, E. The greater angle is on that side of the line, 89 , from which the Ehuttle advances, and is towards that side of shuttle, M , which is furthest from the needle The most common arrangement in sewing ma-
the feed in the direction of the arrow, fig. 6 the eyc* of needle, a, being at right angles, or nearly so, to the path of the shuttle. In this way the ends of those parts of every two consecutive stitches, which are seen on the upper side of the cloth, are placed side by side, as shown by fig. 6 , which gives the seam a zig zag appearance. By arranging the shuttle race as shown in fig. 3, obliquely, the dragging action of the shuttle on the outer side of the loop, or side furthest from the needle, draws every stitch into its proper place. The proper form of angle, $L, 89$, depends on the form of the shuttle.

V is the spool which carries thread for the needle; s is a screw spindle which passes through the hole in the center of N; its head, s, fig. 5 , is conical inside, and enters a short distance in the hole. $s 2$ is a nut which secure the spool to the spindle; it is also conical inside, and the two cones of s^{\prime} and $s 2$, entering the spool as shown, secure it concentrally to the spindle. This spindle is centered on the top of stand A at one end, and the other end in the small slider, t, working in a fixed guide '. The slider, t, has a spring, $t 2$, applied to orce its center into contact with the end of spindle, s. This mode of setting and arrang ing the spool insuresits working concentrically and with uniform friction, on its centers. This contributes to the production of uniform stitches, which cannot be obtained from common spools running loosely on a common spindle. The length of thread let off from the spool is regulated positively by a device consisting of a double fork, u (fig. 2 on the top of the tand,) and a movable clamping check piece, k^{\prime}, between which two pieces the needle thread passes on its way from the spool to the fixed guide, v, through which it is conducted to a guide at the top of the needle bar. The move piece, u, is connected with a lever, w, has its are cam, D, which operates the ncedle bat.

 Also the train fuard, P , when constructed, arranged,
and operated in the maner, aid for the purposes speci-
fied, and not otherwise.

 hand Sef: Ptanter-D. W. Hughes, of New Len

 a, arranged sut:iantially as shown, for the purpose speci.
fied.
[Mr. Hughes' hand planter consists of two parts, pivoted together like a pair of tongs. The planting is done by
thrusting the bottom parts, closed, into the ground, and then opening them by the handles at the top. The opening is done with the fingers, while the implement is in the
rround; by this action the hole is enlarged and the right ground by this action the hole is enlarged and the right
quantity of ternels dego.sited therein : the feeding of the quantity of kernels depo, isted therein:
grain is done $1, y$ a slide which opens and shuts. in accord ance wilh the opening and closing of the legs of the appa-
ratus. T'his is quite a novelty among corn planters.]

 Finterivg Faycer-L Louis Finger, of Boston, Mass.,
asiignor to himself and Lazarus Schell, of same place
 substantially as set ort)

[Street sweeping by machinery is no longer a novelt society. In London, Paris, New York, Philadelphia, and
other populous cities, the hand broom is fastdi sappearing. other populous cities, the hand broom is fastdisappearing,
and the mechanical sweeper doing ten times the work, operating with equal certainty in the night time or day, and never becominated by means of gearing conne ed with the cart wheels, are employed in mostof the
sweering machines; but in the present improvement reciprucating trushes are employed. The brooms are made
to move back and forth, and sweep over the ground in to move back and forth, and sweep over the ground in
almott precisely the same manner as the hand broom. almort precisely the same manner as the hand broom.
Each brush works independently of the other, and is
presed into pressed into place by a spring from behind ; this ar-
rangement permits a yiclding movement, and allows the brooms to lift, separately, over stones or other impedi
ments, which happen to lie in their way, without dis. ments, which happen to lie in their way, without dis.
turbinis the other brooms. The dirt is swept on to an end. less revolving belt, which carries it one side and dischar ges the same on to the ground. As he machine advance,
through a street, the filth will be thrown up into long win rows, to be su
er machine.
There are some other excellent features belonging to this patent, one of which is a novel way of connecting the
third or sterring wheel with the daft Taken altogether the invention strikes us as one that promise sto te of great value and utility.]

 and thuted hetical ribs are tor men, and which movo wit
differont elocities, as these were patented by Sanuel w.
Powell, in 184 .

Desigiv-
Stoves-Benj. Wardwell, of Fall River, Mass.

Maling Hams
As this is about the period of the year when most families lay down their meat for winter use, a few suggestions on the subject will be acceptable to many.
Pors $H_{\text {ams }}$-When the meat is perfectly cold, after being killed, it is ready to be salted. The salt should be of the best quality-solar evaporated, ground fine, is, perhaps, the best kind-and to every pound of it one ounce of fine white sugar should be added. The hams should be laid upon a table or bench, and every part carefully rubbed with this salt then they should be laid in a dry tub until the next day. The same operation should be repeated every day for four days, taking care to turn the hams in the tub every time they are laid down. After this, the operation may be repeated once every two days for a week, when it will be found that the meat has absorbed sufficient salt to preserve it for family use. After this they may be slightly smoked, or hung up to dry. Hams intended for sale should be once rubbed over with the salt, as described, then placed in a strong pickle. This pickle should be made of the best salt--10 lbs. to the 100 lbs . of pork, with one ounce of sugar to the pound added, and half an ounce of salt about fifteen minutes, and the froth skimmed off; it is then set aside to cool. When cold, the hams may be placed in this pickle and left for three weeks. They should then be lifted, hung up for three or four days to drip, and are then fit to be smoked.
For fannily use, instead of smoking the hams after they are salted and dripped, if they are simply rubbed over with black pepper and hung up for a few days to dry, the meat acquires a very fine flaror. A mild smoky taste may be given to hams without smoking them, by simply smoking the barrels in which they
are to be laid down in pickle. This is a good plan, because the taste of the snoke-which some persons like-is giveu to the meat without discoloring it. Sides of pork shouid be treated in the same manner as hams laid in the pickle; but for home use, during winter, by merely rubbing the sides with salt cvery day for a week or ten days, then hanging them in a
moderatcly cool place to dry for use, the meat is much sweeter than that laid down in pickle. This information we have derived from one long engaged in curing pork, and we have satisfied ourselves, practically, of its correctness. The amount of salt for rubbing on the meat does not require to be stated; no person can go wrong by rubbing on too great a quantits. The sugar is used for the purpose of nullifying the bitter taste of the saltpeter, and also that of of soda-that may be in the salt
Brier $\mathrm{H}_{\text {AMs }}$-The fmest beef hams are mad by cutting out the entire bone of the hindquarter, then rubbing in the salt and sugar, the same as described for pork hams, turning them over and rubbing them every day for one week. After this they are hung up to drip in a cool dry place for three days. They are now taken down and rubbed all over, on a table or bench, with some fine salt, black pepper, and cloves, all ground together. Atout one ounce each of salt and pepper and half an ounce of cloves are sufficient for thirty pounds of meat, but the exact quantity cannot be given. No person can go wrong if he rubs every part of the whole surface of the ham with some of this salt and pepper composition. The ham is now fit to be rolled. Tbis is accomplished by rolling itinto a cylindrical form, swilling it round from the narrow to the thickest end, and hanging it up to dry for about ten : ays before it is used. It is cut in round slices for frying by commencing at the butt end. Λ stout cord is used to or turn, or such hams, and it must he he coils of the cord, so as to have every coil firmly bound and held in place when the ham is being cut in slices for daily use. Hams made in this manner are the finest in the world-a luxury. Smoked beef is to be found in abundance in our markets, but it is a poor catable of the describd in comparison with becf prepared as make some such beef hams this fall for family use. They will not keep in summer weather so well as smoked bee.
of this we are not certain.

