

[Reported Officially for the Scientifc Amorican.]

LIST OF PATENT CLAIMS Issued from the United States Patent Oflice for the week ending nov. 6, 1855.

the saws to or ods which operate through adisuatable guid pieces. The latter are movable by means of sot screws so that the angle at which the
at pleasure and vory quickly.
at pleasure and vory quickly.
This invention is the type of a large number of others all intended donis the same purpose. It will apparently
work in practice and work in pracice. and call wo tapering sides of a hock ther
once. Howgood it will operate, however, or whether betert than gome of the
certained by actuat the
A very large number of applications for patents on mart
ble saws have been made and many of them have con up for examination at the Patent Office. They confic
wite with each other pretty generally, as we precicted would be the case. There are few of the applications but are ad
judged by the Commissi ner of Patents to interfere with others, and from fifteen to twenty different cases are fre quently given in reference. Amid such a scramble fo the phie ins doubtul whether any one gets it. Like th leg of mutton among the dogs, scarce a mouthful will be
left for any of them. Great Lusinoss, this marble sawing!]
 ialy as speciriod, and applied to the chain lock ker pipe
in the maner and for the purposes soe forth a and in com
hind

[By thisimprovement the furnace fire is supplicd dith heated instead of cold air, the object being to save fuel.
The invention consists in heating the air by bringing it in The invention consists in heating the air by bringing it in
direct contact and mixing i it with, the escape steam from an engine. in a a evselcommon to both. The air is driven
into the said vessel by a fan and the reattin wit condensation is carried of to the force pump by a pipe
provided for the purpose.
 a comididerable saving in fuel. There is no dificulty about
tho introduction and use of his method ; nor is the expense of its a
ful invention.

[The lath stuff is fed up to the circular of feed rollers, in the usal manner. Behind the saw there is an upright stationary knife edge or wedge, which
oponsthe kerf and causes the lath to foll off one side into a box, while the stuff falls off on the other side upon an inclined plane. down which it slides by its own gravity,
back to the feet of the operator, ready to go through the
 stuff isa great convenience, and saves conididerable labor.
Tlici improvement is a aood one, and so simple that it will Thic improvement is a good one, and so
no doubtbe extensively in troduced.]

 [This compound is intended for use in cities, and where
vera a blaze is wanted for lighting fres in tovess, \&ce. Pa Cere a blaze is wanted for lighting fires in stoves, \&c. Pa
per is very frequently used, at present, for the purpose The mixture is made un of turpentine, powdered char
coal, zum olibanum and camphor, combined in certai
 which is suficient tolight t firie. as it will burn for quit a little while, and produco an intense
very excellent tire-lighting material.]

sam onccontric which 耳orkst he needle when the whole
is constructed and made to operate, substantially as de

 tion of the pibton end of the beams by an inetrmediate
beamm C, substantially as, and for the purposes set forth. [The walking. beam engine is doubless well known to
all our readers, for $i \mathrm{itis} \mathrm{i}$ in common use on board of A mer ican steam vessels of every kind. If the reader will im.
agine three of these engines placed one after the other, in agine three of these engines placed one affie the other. in
"Indian fle., ats the boys says, he will have an accurate
in sists in connecting all the three engines together, in sunch way that thirir moremementare regulated. and the powe
properly equalized. The object is to drive two pairs
od paddie wheels simultaneously. Two steam cylinders are
employed; the central engine is connected at one of it employed; the central engine is connected at one of its
beam ends to the piston of ofo of the cylind ors, and at the Lother end to the other piston. TTe remaining, engines con-
oct respecti rel w with the e entral ensine from which the nect respectively
receive motion.]

 may act at a cap.
ings, as set forth.

 Cow sashes without weights, where one sash is made to have simple pulleys in the upper part of the window upe, whe romeses down. The present invention con.
uists in having double pulle ws, which may be connected or disconnected, at pleasure, by means of a clutch, so tha
when it is desirable, one sash may be raised or lowered independent of the other. The pulleys are placed on th thumb button. 1

 bit the whole
as sef forth.

harvegting Mache-hsul.

 Iantially as described

 debig.

[Our Forcign Correspondence.]

Interesting Pariculars in resard to the Mammoth
Steamship "Great Enstern."
London, Nov. 1, 1855.
Messrs. Editors-On my visit to the mammoth steamer now building at Blackwall, on the Thames, I was fortunate enough to procure from the engineers and others the following little is known respecting her, especially in the United States.
The vessel is not yet named, though it is rumored she is to be called the Great Eastern. She is being built by J. K. Brunel, Esq., the well-known engineer for the Eastern Steam Navigation Company-who have a capital of six million of dollars ; their vessels are all designed for the India and Australia trade, and will be four in number, the first being the Great Eastern. She will be the largest and most powerful steamship in the world, as will be seen by the following statement of her dimensions :-
Length, 680 feet; breadth, 83 feet; depth from deck to keel, 58 feet; number of decks, 4; length of saloons, 400 feet; hight of saloon between decks, 15 feet; capacity, 27,000 tuns ; will carry 18,000 tuns of coals and cargo. She is to have both screw and paddle engines, whose nominal horse power will be: screw 1,600 , paddles, 1,000 . Total, 2,600 horse
power. Cylinder of screw engine, 4 feet; diameter of cylinder, 84 inches; stroke, 4 feet cylinders of paddle engines, 4 feet; diameter of paddle engine cylinders, 74 inches; length of stroke, 14 feet 6 inches. Each engine-room will be forty feet long. The screw propeller will be 23 feet in diameter. The paddle wheels have been fixed at sisty feet diameter. Draft of water, loaded, 8 feet; draft of water in ballast, 18 feet. She is to carry sir hundred first class passengers and eighteen hundred second
an army of 10,000 men, with all their field equipments. Weight of iron used in construc tion 7,000 tuns. She is to be built double, having an inner and outer shell of iron plates. The masts are five in number-ship rigged. The steering apparatus consists of two rudders which, from their power, ought to bring her round. The after rudder is to be placed like an ordinary ship's rudder ; the screw will work forward of this rudder; ahead of the screw is to be a second rudder, in form something like a common rudder. The engines will be large than any hitherto made. They will be placed in different parts of the ship, entirely indepen dent of each other. The vessel will have ten boilers and five smoke pipes. Every boilercan be cut off from its neighbor and used or not, as desired; they will be placed longitudinally along each side of the ship. Someidea of thei generative power may be formed when I say that every boiler will have ten furnaces, thus giving to the whole no less than one hundred large fires. An experimental boiler was made previous to deciding upon the one to beadopted. The coal to be used will be anthracite The vessel will have two paddle wheels in the usual manner, but the paddle engines are to be on the disconnecting principle, that they may be used jointly or separately, so that one o both of the paddle wheels may, if desired, be put in independent motion. Her deck is to be fush ; and a promenade deck, twice the length of the famous Great Britain, will be available for her passengers. In her external appear-ance-drawing inference from the working model-I should think the Great Eastern would be a splendid ship. She is molded with very fine lines forward and aft, with an elliptical stern. Her speed should average fourteen miles an hour, while her great size ought at al times to prevent her from shipping water. One of the reasons for building her so large is to give her capacity enough for carrying coal for a continuous voyage of twenty-five thous and miles, thereby saving the expense of estab lishing coal depots, and the time lost by coaling in foreign ports. These items alone are estimated at 40 per cent. of the outlay for the vessel.
In casc of accidents she will have many un usual chances. The floor of this ship is to be perfectly flat. The outer and inner plates will be joined to each other by longitudinal webs or girders formed of plates and angle iron. There will be seventeen of these webs on eac side of the ship, thus joining the outer and inner skins by means of a number of water tigh cells, of such extraordinary strength that the give a rigidity never before communicated to any vessel. Besides these small cells forming the wall, as it were, of the ship, she is being built in seventeen sections-the midship sec tion being first built up to its full altitude, and the iron decks laid-the other sections, fore and aft, being successively built in like manner and jointed to the preceding section. It may, therefore, be said that the ship will consist of a great number of water-tight apartments be tween the outer and inner skins, and of thirty two large square compartments in the body of the vessel, not merely nominal divisions, but complete, substantial, water-tight bulkheads, of sufficient strength to bear the pressure of being filled with water. In case of accidentally being broken in two, the separate portions would loat, without damage to the cargo containe in the uninjured sections. The outer plates are of inch iron-the inner three-quarter inc ron securely bolted and riveted together. The first plate was laid in May last. A number of the sections are now built; the stern-post is rected, and the riband or outline of the after part of the ship is already put up. The work is rapidly progressing; at the present time over five hundred men are at work upon the ship in all departments. Should no unforeseen obstacles arise, she will be launcbed within year. Owing to her great size she is being built broadside to the river. It is intended to launch her by means of two immense cradles, which will gradually lower her down to low water mark, whence, on the ensuing tide sh will be floated off.

California will yet become a silk, as well as gold-producing State. Dr. Behr, of San Francisco, has discovered a native silk wo
of rare qualities, for spinning fine cocoons.

