Scientific Ancrican.

NEW-YORK, SEPTEMBER $15,1855$.

The Opening of Our New Year. We begin, to-day, a new volume, and ente upon the duties of a new year, under circumstances both flattering and peculiar. Materia interests of every kind are flourishing with unwonted activity. The cries of distress and the
sights of poverty, which but a few months since so often met the eye or fell upon the ear, are now no longer seen or heard. No armies of laborers, out of employment, parade our streets, asking for work. Their honest wives and children no longer beg, from door to door, the necessaries of life. No idle shops, vacant and abandoned, attest a general gloom. But, on the contrary, the whole land, from North to South, from East to West, presents one universal scene of industry and prosperity. The ringing anvil, and the clickering loom, join their mixed sounds to songs of hearty joy, from busy operatives. The earth repays the farmer's toil, with over-running measures. Wher ever we turn, all is activity and gladness.
In view of these great blessings, how should our hearts swell with thanksgiving and praise toward that All-wise Being "Whose glory and Whose presence the Heavens declare, and Whose handiwork the firmanent showeth forth."

To us, it is pleasing to observe that, amid the bustle of this uncommon material prosperity, the intellectual powers of our people are not left unexercised. Since spring opened, and the prospect of so glorious a harvest became apparent, the student, the inventor, and the thinker, appear to have applied themselves to new tasks, with redoubled vigor. The number of discoveries and inventions which have come under our notice, within the four past months, exceeds, by far, the developements of a similar nature, during the same space of time, in any
preceding year. It is also observable that, in the character of the subjects pursued, and the results produced, there is a decided improvement; they evince closer study, and a higher degree of mental effort.
It is this disciplining and stretching of the intellect,-this constant endeavor to exceed in the future, whatever has been done in the past, that our people should ever try to cultivate. In all the new triumphs of mind over matter, the Americans, from this very cause, stand every where pre-eminent. Who does not remember with pride, the splendid victories of our countrymen at the Exhibition of All-Nations in London. Acres and acres of space were there covered over, with rare and brilliant specimens of goods and products, from every clime. Diminutive, compared with the displays of other large nations, the Department of America, a way in its lonely corner, became,
for a time, the butt of ridicule and contempt. for a time, the butt of ridicule and contempt But when, at last, the hour of trial came, he genius and her superior intelligence, shone forth
with dazzling splendor. The vast and magnificent display, by which she was surrounded nificent display, by which she was surrounded
no longer served to overawe and hide her no longer served to overawe and hide her
strength, but rather helped to lift her up conspicuous above the whole, "the observed of al observers."
The Parisian Exhibition affords another illustration, in some degree similar. The French, the English, and every other Department, teem the Enghish, and every other Department, teem
with endless displays of riches and beauty yet there is, throughout them all, a strange ab sence of novelty. The articles exhibited have for the most part, long been known, made, and veuded. It is only when the comparatively small Division of the United States is reached, that anything absolutely new is seen: while, among the most striking features of the entir among the most striking features of the entire
Exhibition, are the marked triumphs which Exhibition, are the marked triumphs which
American genius obtains, in every prominent American genius obtains, in every prominent
contest.
Such are some of the results that have al Such are some of the results that have al-
ready attended the efforts of our peopleatselfadvancement. Knowledge, the world over gives power and fame: this is true in regard to individuals, as well as nations. Let us, therefore, in the future, strive onward. In the new year that is before us, now so propitious of good, let every individual make a new ex ertion to rise above the level of the past.
such always has and ever will be, a rulingen- his services, exclusive of patent rights; and if deavor. On every side it is allowed that the Scientific American, in point of vigor, interest, reliability, and influence, stands at thehead of all anglogous journals; indeed, we can add, as an absolutefact, that its regular weekly circulation exceeds that of all other publications of its kind, in the world, combined together.
These proud positions we shall ever try to maintain. If an increased desired to benefit our readers,-to spread before them the honest truth, to enlighten, to encourage, and in every way to promote their advantage, can do aught to retain and augment the confidence with which they have honored us in the past, then have we no fears for the future. Boldly, therefore, we launch out upon the voyage of a new year, fully believing that, at its termination, not only ourselves, but all who have gone with us, will be found to have made a permanent and a satisfactory progress.

Experiments with Turbine Water Wheels. We owe an apology to James B. Francis, Engineer of the Corporations of Lowell, Mass., for not noticing at an earlier date his work on the above subject, which does him great credit as a man of science and engineering skill. We had received communications last year from two of our correspondents, in which they stated they were preparing works descriptive of their experiments with turbine water wheels, and an ticipating the early publication of these, we waited till now in the vain hope of being able to compare and present some of the peculiar information belonging to each.
The work of Mr. Francis is a large volume, illustrated with beautiful plates, and is the only book worthy of the name ever published in our country, or any other, on the subject of "Turbine wheels." The experiments described in this work were made on that hard worked stream, the "Merrimack River," at Pawtucket Falls, wherethrobs the heartof busy Lowell, the greatest manufacturing city on our continent. The fall, in ordinary low water, is 33 feet, and the proprietors of the locks and canals on the river at Lowell have granted 139, 11-30 mill powers, of 3595.933 cubic feet of water per sec ond, amounting in all to $8965 \cdot 4$ horse power, which is now employed in turning the busy wheels, and giving motion to thousands of spindles, looms, \&c., belonging to eleven companies, employing the immense in vested capital of $\$ 13,000,000$ in manufacturing. Much o this great water power is employed on turbine water wheels of a very superior description, as the results of experiments show. At one time breast wheels were exclusively used at Lowell, and until the year 1844 much prejudice existed against re-action wheels. "The atten tion," says Mr. Francis, "of American engineers was first directed to improved re-action wheels in France, by some articles published in the .Journut of the Franklin Institute, and by a translation of Morin's French treatise in 1843 by Elwood Morris. The experiments with one of Mr. Morris' wheels indicated a useful effect of 75 per cent., and this being as good as that claimed for over-shot wheels, the attention of our millwrights was directed to their merits." It appears to us that the pamphlet of William Whitelaw, on re-action waterwheels, published in 1840 , deserves some credit for bringing the subject prominently before our people, as his water wheel, erected in that year, indicated a useful effect of 75 per cent.

From the detailed experiments of Mr. Francis, we are led to conclude that over-shot, breast, and under-shot wheels should no longer be tolerated, as the very best of them give out no more than 75 per cent of the water power, and are far inferior in efficiency to the most improved turbines.
In 1844, Uriah A. Boyden, an eminent hydraulic engineer of Massachusetts, constructed a turbine wheel for the Appleton Co.'s cotton mill at Lowell, which was found by ex periments with the dynamometer to give out 78 per cent. of the water power. This was first rate, but greater triumphs were yet in store for Mr. Boyden. In 1846, he superintended the construction of three turbines of 190 horse power each, or the same company, and by the terms of the ontract his compensation depended upon their performance. If the mean power derived from
them was equal to 78 per cent. of the water them was equal to 78 per cent. of the water
power expended, he was to be paid $\$ 1200$ for
still greater he was to receive an additional compensation of $\$ 400$ for each per cent. of power gained. In accordance with the contract, the useful effect of two of these wheels were tested by a very perfect Prony dynamometer, and the quantity of water gauged by a wier. The observations on them were put into the possession of Mr. Francis for computation, and he found that the mean maximum of their effective power was 88 per cent of the water etpended. According to the terms of the contract, Mr Boyden was then fully paid $\$ 5200$ for his services and patent rights. This was certainly a great triumph for him-one worthy of universal admiration. The experiments upon one of these wheels, and the flow of water over the wiers, are ably and fully detailed, with illustrations, in this work, which should be in the possession of every hydraulic engineer.
There is no subject which has engaged more discussion, and respecting which a greater variety of opinion prevails among millwrights than turbine water wheels. We are convinced that the dynamometer is the only test of the working qualities of each wheel, and no other should be admitted, for it is a positive fact that the effective value of such wheels, according to their construction, varies from 50 to 88 per cent.

We have a letter now before us from Heath
\& Arthur, of Laurel, Md., in which they state that one of H. Van Dewater's 6 feet Jonval turbines does all the work of their factory, driving 1260 dead spindles, 36 looms, and the necessary machinery and shafting for making No. 6 1-2 yarn and cloth from it, with 20 per cent. less water than three of Parker's wheels. They do not state what the total useful effect of the wheel is, but, that it is a gain of from 5 to 30 per cent over the three Parker's, which it has superseded, for with these wheels the factory never could turn out over 600 lbs . of yarn per day, while with the Van Dewater wheel, it turns out 750 lbs . without difficulty,sometimes running in two feet of back water. This information which we have presented, respecting the value of turbine water wheels, should claim universal attention. No other kind of wheel, not the best overshot in the world,-has been known to give out within ten per cent. as much power as the Lowell ones. Turbine wheels then, should be used in preference to all others, not only because of their economy of water power, but also because of their compactness, simplicity, and cheapness. No doubt much depends on the workmanship of each wheel, for the principle of applying the water, on Boyden's wheels-giving the inlet water a whirling motion in the wheel's di-rection-is that discovered and first applied by Parker. We scarcely expect much further improvement to be made in such wheels, for 12 per cent allowance for friction is very small. Yet in this era of great mechanical skill, and progressive science, we dare not place a limit to improvements on any machine. To struggle for perfection, as the standard of effort, is the only way to improve and progress.

The Tribune and the Scientific American on Air

The Tribune of the 6 th inst. contains another article in answer to ours in No. 51, last Vol It says" the Scientific American now admits the existence of the law that atmospheric resistance increases in the duplicate ratio of a moving body." This is an insinuation which does no honor to an honest man. It is intended to convey the idea that we had denied the existence of snch a law, while the fact is w did no such thing.
The first article of the Tribune which led to this discussion was grandiloquent aboat disembodied spirits and planets moving with awful velocities, and about railroad trains being whirled through space swift as cannon balls, and very economically, by the removal of atmospheric pressure. Being silenced on the latter point, it now proceeds to rush packages through a vacuum tube-with an accelerated velocity of thousands of miles in an hour by some constant force. Although we explained the action of gravity in the article alluded to, and showed that the conditions of a package moving in a vacuum tube, were entirely different from those of a falling body acted upon by gravity, the Tribune has such obtuse ideas of the law of gravity, that it mistakes
our description of its effects for a mere statement of what the law is, and its own statement of what the law is, for a description of its effects. It thus confuses itself.
A cannon ball falling from an elevation will A cannon ball falling from an elevation will
acquire a uniformly accelerated velocity. The same ball projected upwards will have its speed uniformly retarded. If the same ball be placed in a vacuum tube, it will not move a single inch. What produces these different results? Gravity, which is ever constant; but the conditions of the three cases are entirely different. The Tribune seems sublimely regardless of conditions, hence, it talks of a regardless of conditions, hence, it talks of a
vacuum tube as if it were to be placed vertivacuum tube as if it were to be placed verti-
cally, and receive packages from the uttermost boundaries of the atmosphere, instead of being laid horizontally on the ground, and its packages propelled by the simple pressure of the atmosphere.
On the day the Tribune's article was pubished, a correspondent-J. O. Gilvie, No. 54 State street, this city-saw at once through the absurdity of its positions, and sent us a short article on the subject; we cannot do better than quote his remarks.

The problem to be solved is simply this, what is the velocity of a stream of air flowing through a given aperture intoa vacuum by the ordinary pressure of the atmosphere, the capacity of the vacuum being also given to find how long time will be required to fill it? It is very plain to me, that if the body impelled by the stream of air accelerates its velocity, the original motivepowerwould become null, because the air would not follow it up faster than the uniform pressure of the atmosphere forces it into the tube. Insert a pipe into the bottom of a reservoir of water, and the stream which commences to flow through it will not increase in velocity with the increase of distance though the horizontal pipe were a thousand miles long.'

This is pointed and clear. The maximum velocity of the water is to be found at the bottom of the cistern, and the maximum velocity of the air at the entrance of the vacuum tube; it cannot be otherwise, according to the law of gravitation. The velocity of air rushing into a perfect vacuum on the surface of the earth, is very great, butit is not uniformly accelerated in the tube. If such a law prevailed, it would be the easiest thing in the world to increase the power of water for a wheel, independent of the hight of the fall, by simply increasing the length of the water flume.

We wish it to be distinctly remembered, that although the new volume of our paper begins to-day, the opportunity of competing for the cash prizes which we offer, continues until the first of January nezt. This will afford all those of our friends who desire toimmortalize them-selves,-and, at the same time time, get well paid for the labor-ample time to extend the field of their canvassing, and thus to swell their lists of subscribers.
Names should be sent in, with the funds, as fast as received, in order to make sure of com. mencing with the volume. We will keep correct accounts with each competitor, of all names forwarded. It matters not whether they come to us singly or by dozens. They will be credited as fast as received, and the gross amount footed up on the appointed das.

SPLENDID CASH PRIZES:

The proprietors of the Scientific American will pay in cash the following splendid prizes or the fourteen largest list of subscribers sent in between the present time and the 1st of Jan-

uary, 1856; to wit:
 For the largest List .

For the largest List -
For the 2d largest List
For the 3d largest hist
For the 4
For he 3d largest list
For he 4in largest List
For he 3th largest Livet
For the 6th laraest List
For the 7ih largest List
For the 7ih largest List
For the 9th largest List
For the 91h largest List
Eor the 10ih largest
Eor the 10ih largest List
For the 11 h largest List
For the 12 h lareest List
For the 12th lareest List
For the 13 h lareest Kist
For the 1414h largeest List
For
Names can be sent in at different times, and rom different Post Offices. The cash will be paid to the order of the successful competitor immediately after the 1st of January, 1856. MUNN \& CO., 128 Fulton st., New York. MUNN \& CO., 128 Falton st., New
nGSee prospectus on the last page.

