machine by varying these movements. As the saws approach the center of the log, the feed motion necessarily must be increased to saw stuff of an equal thickness, as the log, being the smaller, cannot pass through so much space with the same amount of its shaft's rotation. This is provided for by the lever, $\mathrm{M}^{\text {, }}$ passing through the slotted plate, \mathbf{N}^{\prime}, which is attached to the frame, G^{\prime}, and of course as this frame is depressed, every stroke of the plate, N^{\prime}, will increase the movement of bar s and give it a longer stroke, like a ratchet, to give a greater amount of motion to the shaft of the \log and frame, G '. A square bolt may be placed in a frame made for the purpose, and sawed into strips like the log, only it has to be shifted crosswise under the saws, when a series of strips or boards are cutdown vertically through it by the depression of frame, G^{\prime}.
In this machine, laths, hoe, and broom handle stuff, \&c., as well as boards, scantling, \&c. may be sawn out directly from the \log, requiring no re-sawing. The machine is very compact, as it cuts both ways, consequently its carriage is only half the length of those which cut by the \log instead of the saw moving. It is self-acting, and can be so arranged by a cutoff plate for the slot in plate N^{\prime}, as to shorten the stroke of the lever, M^{\prime}, for any width of stuff to be sawed. It will be understood that the rod, $\mathbf{O} 0$, and plate, \mathbf{N}^{\prime}, on it, are operated by dogs striking studs during every traverse of the saw carriage. It is certainly a labor-saving sawing machine, as the log or bolt, y, has but to be centered in it, and the machine set in motion, when it will work away until the entire log is cutup, without any handling or work byं the operator. We have seen a large working model of one of these machines in operation in this city; and was pleased with its performance. It will be on exhibition at the Fair of the American Institute, to be held in this city in the early part of next October, where all interested in valuable and new improvements in sawing machinery will have an opportunity of witnessing its operations.
More information respecting it may be obtained by letter addressed to J. M. Hutton, Richmond, Indiana.

Chane's Fancy Window Blind

The accompanying figures represent the fan cy window blind of Frank Chase, of South Sutton, New Hampshire, for which a patent was granted to him on the 17th of July last. Fig. 1 is a front view of a pair of blinds, and fig. 2 is a transverse section or edge view. A rectangular frame, cccc, for each blind is made by securing side stiles to the top and bottom rails in any common way. To one side of the frame a series of oblique slats. a, are nailed as shown, leaving spaces between them. On the other or back side of the frame, a series of slats, b, are nailed opposite the spaces between the slats, a. All these slats are nailed in at the same angle, and as each series is secured on the opposite sides of the frame, they allow the air to pass through the spaces between them-which are equal to the thickness of the stiles-but will prevent the direct rays of the sun penetrating into the room, and yet will admit reflected light between the spaces name... These slats, $a b$, it will be understood, are fixed and not the same as the vibrating ones of ve nitian blinds. They may be put on in differ-
ent fanciful positions from that shown and yet hung in the same manner. Their advantages mental character, and as substitutes, at least maintain the same characteristics, such as ra- consist in being easily mede, and at a small for shutters, their advantages are evident. diating from a center, forming a star, or nailed expense, and in being strong and durable. No More information may be obtained by letter horizontally, to present nearly the same ap- tennons, mortises, rods, or wires, are required addressed to the patentee, at South Sutton, pearance as common blinds, the frames being in constructing them. They are of an orna- N. H.

MACHINE FOR SAWING DOWNSTANDING TREES, AND LOGS.

The accompanying engravings are views of \mid or to the standing tree to be sawed down, as \mid saw is produced by means of the revolution 0 new machine for sawing down standing trees will be presently shown. I represents a bar or logs, for which a patent was granted to Matthew Ludwig, of Boston, Mass., on the 17th of July last. Fig. 1 is a side view of the machine, and fig. 2 is a top view of it, shown in a different position from that of fig. 1. Similar letters refer to like parts.
A, fig. 1, represents a suitable framing on which an ordinary inclined horse power is placed, to operate the machine. B represents the shaft of the upper roller of the endless belt, having on one end a toothed wheel, C , which gears into a smaller toothed wheel, D , the axis of which is attached to the framing. The toothed wheel, D, has a crank arm, E, attached to it. To the end of the crank arm there is attached by a pivot, a, one end of a connecting rod, F. The opposite end of this connecting rod is attached by a screw, b, to a sleeve, G. This sleeve is of a rectangular form, and is fitted loosely on a rectangular bar, H , one end of which is secured to the framing. The opposite end of the bar, H , is attached to the $\log \left\lvert\, \begin{aligned} & \text { its work. The reciprocating motion of the }\end{aligned}\right.$

The accompanying figures represent an im- nular groove, i, with an outlet at the bottom proved portable grain mill, for which a patent thereof, for the purpose of collecting and diswas granted to Charles Leavitt, of the city of charging the oil from the pivot, d, and preventQuincy, Ill., on the 27th of last February. Fig. ing it from mixing with the meal. A sleeve, g, 1 is a vertical section of the mill, fig. 2 is an fits upon the pivot, d, and revolves thereon, its elevation, fig. 3 is a plan view of the movable lower edge resting upon the bottom of the rings, and fig. 4 is a plan view of the annular conductor. Similar letters refef to like parts. The nature of the invention consists in apThe nature of the invention consists in ap- base of the breaker, c, is joined to the sleeve plying to a portable Corn Mill, (in which the by four strong arms, l. The plate, h, extends external portion or concave revolves upon a to the outer edge of the conductor, e, and carries
fixed cone) the following improvements: First the combination of the bed plate, legs or supports, the breaker, and the main pivot, cast in The arms, l, are toothed on their under sides to one piece. Secondly, in combination with the correspond with the teeth in the breaker, c, foregoing, a lever in two parts, attached to an forming together an effective crusher for the external revolving concave, constructed and corn and cob when ground together. In the arranged substantially as hereinafter described. 'space between the base of the breaker, c, and
The bed plate, a, legs or supports, b, ogee the inner edge of the conductor, e, are secured breaker, c, and vertical main pivot, or journal, d, by bolts (in such a manner as to be readily reare cast in one piece. Upon a flange project- moved when required) a flat ring of steel or ing from the lower edge of the bed plate, a, is hardened iron, m, with grinding teeth on its placedan annular grooved conductor, e, which upper side, of any convenient form; but it is has an outlet at f^{\prime}. Between the top of the preferable for crushing or coarse grinding, to
breaker, c, and the base of the pivot is an an- use teeth, the transverse section of which pre-
saw is produced by means of the revolution \mathbf{o}
the crank arm, E , the sleeve, G , working back the crank arm, E , the sle
and forth on the bar, H .
In order to saw down standing trees, the bar, H, is withdrawn from the socket, N, turned, and replaced in the socket. In this case the bar, I, and saw, J, rest upon the bar, H fig. 2, but the friction roller of the lever, L, still bears against the bar, I, and keeps the saw to its work, the saw, of course, cutting in a horizontal direction. The outer end of the bar, H , is clamped to the side of the tree, P.

In order to re-saw the wood into short lengths, another bar, Q, and saw may be at tached to the sleeve, G, as in fig. 1, the bar, Q , working in a suitable guide, S, attached to the framing. The lengths of wood represented by T, while being sawed, may rest in suitable hooks, U , at the front of the framing.
This machine is simple, and easily construct-
More information may be obtained by letter addressed to the patentee, No. 484 Washington
treet, Boston, Mass.
sents one side inclined and the other vertical. The mill is run in such a direction that the vertical sides of the upper and lower grinding surfaces shall meet each other. In a groove in the upper plate, h, is placed another ring, o, of the same size, material, and form as m, with the teeth of the same form, and arranged as before described; this is also removed when required. Between the ring, o, and the central opening, is a circle of large teeth inclined to the rear, and vertical to the front, and bevelled upwards on their inner edges for the purpose of forcing or crowding the grain on to the rings. It is preferable in grinding fine meal to run the grinding surfaces in such a direction as to oppose the inclined sides of the teeth in one ring to the inclined sides of the teeth of the other and with that view another pair of rings are made to fit in the same places as the others, with the inclined sides of the teeth reversed -Upon the top of the pivot, d, is a cap, p, which rests on the sleeve, g. Through the cap, pivot, and bed plate; a screw, q, passes, having its nut at the bottom; the object of this screw is to regulate the mill by pressingthe grinding surfaces together. Upon a flange on the edge of the central opening is a suitable hopper. Upon each side of the hopper, resting upon the top plate, h, and secured thereto by bolts, is placed a piece of scantling extending to about twelve feet from the center of the mill, they there meet at a very acute angle forming a lever secured to a bolt by which the horses are attached. A board, s, extends from ne of the ends of the scantling to the other pon which a man can stand to feed the mill. This mill is best adapted for crushing and grinding corn and cob together, or by using the ings which present the inclined sides of their eeth to one another for fine meal, \&c. If the eeth should wear out or break, fresh rings can be put in at a trifling expense. The annular onductor is a good improvement upon mills of is description, which allow the meal to fall om all parts of the base of the concave. More information may be obtained by letter addressed to the patentee at his residence in Illinois.

