	Scientific American			
		equivalents, the telis, spring, cams, \&sc., have all been used invarious ways for producing alarms. I therefore do		
	on hinges and made to open and close in the ordinarymanner, are divided into two parts and caused to slide upand down in the window frames, like the common window sashes. By means of a simple application of cords	 		
		against any movement back or forth on the breast sum-ners or lintels, or against falling outwards, but are notprevented from falling inwards, when they become in-		
		[The patentee of the above improvementis a member of the firm of Badger \& Co., who are very extensively en-	the smallest space without a continuous conductor. Mr. Gamewell provides an angular coil of wire, placed	
		many of the beautiful specimens of architecture in ironwhich now adorn her streets. The nature and object ofMr . Badger's invention is set forth in his claim. It is an		
			pheric electricity, when it arrives at the elbows, to leap from them on to some conducting points of better metal,	
		dichirs Dilue	in approaching the instrument, must pass through the el- bowed coil. The conducting points attract off the atmos.	
			delayed. This invention is one of importance in the art the Scientific Imerican Agency, in Europe Cuba, \&c.]	
			ata	
	whenwhich ited but ioswhen			
		the purpose set forth.[This hand corn planter is exceedingly simple, and from		
Semen		plement, and dropped; at the same time the coveringtube is made to take up dirt and cover the corn. This is very excellent curn planter.]	Feourth, ziving the two fliling holks or erevof fliling	
			[The principal feature of this invention consists in the employment of two hooks instead of a shuttle for putting	
			eme filling into the warp, which enter the shedsfrom op-	
			hrough. The filling thus drawn through, is double,	
		mits the turning of the nut without removal of the wrenchafter the jaws have been adjusted. The comlination of		
			ature. The invention is applicable to nearly all kinds hand or power looms, either for plain, fancy or figured	
			the two derices is ingenious, and results in the production	
			pensive part of a loom to keep in order Third, in obvi-ating the damage likely to occur by the shuttle flyingfromthe loom. Fourth, in seldom requiring the stoppage of	
			the loom, an accident which is not very liable to occur, - m	
			receiver, made to receive the artlcles, and naintain them at proper distances asunder, a card nr sheet-feeding me. chani-m, and sewing machinery on one or both sides of this improse,nent as one of a very import- aid receiver.	

Rccent Furcizil Lntentant.

New Metallic Alloys.-Messrs. de Ruolz and Fontenay, of Paris, have invented an alloy which may be employed for almost all purpose to which silver is usually employed. The im proved alloy is composed only of silver, copper and purified nickel; which metals may be combined in any suitable proportions, but the following are preferred:-Silver 20 parts, nickel from 25 to 31 parts, and the rest up to 100 parts in copper. An alloy is thus produced parts in copper. An allor is thereabouts, of silcontaining 20 per cent., or thereabouts, of silver, and constituting silver of the third degree of fineness, thus reversing the proportions of the ordinary composition of the second degree; this latter containing 800 parts of silver and 200 of alloy, whereas the improved compound contains 200 parts of silver and 800 parts of alloy.
The copper employed must be the purest obtainable in commerce; and the nickel should be purified by some suitable process. The means preferred for the purification of the nickel are as follows:-When treating impure nickel of commerce, the metal is to be dis solved in a mixture of hydrochloric and nitric acid, or in dilute sulphuric acid. In the latter case the dissolution must be expedited by electric or galvanic agency, and the operation should be carried on in vessels of platinum. The solution is then submitted to the action of a current of chlorine, and the iron impurities precipitated therefrom by boiling with carbonate of lime-care being taken not to have to great an excess of this latter substance.
The nickel is then precipitated by carbonate of soda, and taken up again by hydrochloric. acid, and diluted with a large quantity of water. The solution is then saturated with chlorine gas, and an excess of carbonate of baryta is added thereto. Theliquor must then be left in repose in a cold state; and the nickel may either be precipitated in the metallic state by means of a galvanic current, or precipitated in the form of an oxyd, which oxyd may be afterwards reduced to the metallic state.
Although the proportions above given are those generally employed for the production of the improved alloy, the proportion of silver
may be variously increased up to the tollowing may be variously increased up to the following limit:-silver 30 parts, nickel 31 parts, and copper 49 parts: total, 110 parts.
It is advantageous, first, to melt the copper and nickel in the granular state, and afterwards to introduce the silver; and the flux to be employed in this state consists of charcoal and borax, both in the state of powder; and the ingots obtained are to be rendered mallea-
ble by annealing for a considerable time in ble by annealing for a considerable time in powdered charcoal.

The patentees claim the production of an alloy composed of silver, copper, and nickel, in whatever proportions these metals may be
combined, which alloy has all the appearance combined, which alloy has all the appearance
of real silver, and may be used for various of real silver, and may
In connection with the above invention, Messrs. Ruolz and Fontenay have also patented some improvements in the treatment of certain metals for producing an improved metallic alloy, which consist principally in additions to, and modifications in, the process before described.
It has been found by experiment, first, that this new combination of metals can be so far advantageously modified as to employ the following proportions: copper as high as 49 parts, nickel 31 , and silver from 20 to 40 ; making a total of 100 to 120. Second, that phosphorus can be usefully introduced into these alloys, and, in certain cases, extracted after uired ellect has be produced by it
The nickel and copper are first melted, then brought into a granular state, and are afterwards replaced in the crucible and re-melted; after which the silver is added. The best flux which can be used is an intimate mixture of borax and powdered charcoal. The ingots, when obtained, must be slowly annealed at a cherry-red heat, in a closed vessel with powdered charcoal.
As to the use of phosphorus:-1. If it be required to obtain cast articles, such as statuettes and objects of art, a certain quantity of phosphorus must be introduced into the combination. The introduction of phosphorus can be effected in several manners-first, by metal ing the mixture of the three metals with a mixture of equal parts of acid phosphate of lime and powdered charcoal, brought to a red heat. Secondly, the mixture of the three metals may also be heated together, with a mixture of 100 parts of phosphate of lime, 50 parts of sand, 75 parts of boras, and 10 parts of charcoal. As regards the relative proportions of the metallic alloy and the phosphorated mixture, described above, the following are the most suitable for cast articles:- 1000 parts about 150 parts of the phosphored mixture The quantity of phosphorus to be added depends upon the length of time takèn in heating. Thirdly, the following method is most prefera ble. The operation is as follows:-Phosphuret of copper is prepared in the ordinary way, and its richness in phosphorus is ascertained by analysis. This phosphuret of copper is then re-melted and granulated; after which the following mixture is melted :-Phosphuret of copper 49 parts (of such a strength as to be capable of introducing into 100 parts of the alloy from 1 to 20-1000ths of phosphorus), nickel 31 parts, and silver from 20 to 40 parts, or more, as desired by consumers. It must be well understood that the silver must not be introduced into the alloy until the phosphuret of copper and the nickel are completely melted, and combined or mixed. The effects produced by this introduction of phosphorus are to augment the fusibility of the alloy, causing it, when melted, to run in a very limpid state, to obtain a closer grain, to avoid all porosity, and to have a greater homogeneity, and finally to render the whiteness greater.
2. In order to preserve the advantages arising from the presence of phosphorus when articles are required to be forged, rolled, or stamped, it is necessary, during this operation, to restore the ductility and malleability which he phosphorus has to a great extent impaired To effect this, after having obtained regular and homogeneous ingots by the aid of the phosphorus, the phosphorus must be almost totally eliminated or abstracted, which may be effected by submitting, during a long time, the metal to a cherry-red heat, in a close vessel, with powdered charcoal.
The patentees claim the introduction (andin certain cases the elimination) of phosphorusin the manufacture of alloys of silver or other metals.
[The above information is very useful.
The resignation of the venerable Dr. Way land, President of Brown's University, Provi dence, R. I., is announced. He has occupied the chair of that institution for 29 years-al most a generation

Machinery and Hand Labor
At a recent meeting held in this city, ostensibly called a "Mechanics and Workingmens' Meeting"-the contract system for cleaning the streets was denounced, and one of the speakers was exceedingly severe on the street sweeping machines. In a flight of nonsensical to clean the work can be done by hand."
There may be something wrong about making contracts for cleaning the streets; this we will not discuss, but we do say, that any man who declaims against the use of machinery for any purpose, whatever,-at the present day -must be a knave or an ignoramus. The man that he is honest in what he says, should march out to the wilderness to gain his living, with only the dress, weapons and implements furnished him by naturc. He must not take a coat on his back, for the cloth of it is woven by a machine. He must not take rifle,axe nor knife, for all these are made by machinery. He must go forth to make his louse like the beaver, and take his prey like the panther.
We frequently hear of machinery being denounced because of its superseding hand labor, for machinery has not decreased the demand has becoun has only changed its direction; i mas become the drudge, man its director. And we begin? The seamstress may complain that ewing machines have taken away her labor. That may be, but it would just be as reasonable to complain of the needle and thread she uses, for they are made by machinery. The laborer who has been sweeping the streets may complain of the street cleaning machines, but was not his own shovel made by a machine. A fewmoments reflection upon the uses of machinery ought to convince the most ignorant and skeptical of the benefits conferred upon man by machinery. It is a test of civilization -it is a grand civilizer. Take it away from man and he sinks into the most degraded savage.

Preservin x Vergetables.

We have received a number of letters re questing us to give the best means of preserving regetables and fruits in a state as nearly fresh as possible. The information isno doubt of great importance. We can ouly give our opinion respecting a method which we think would be successful if tried fairly. It consists in expelling all the moisture from the vegetebles and fruit at a low heat, in such a place as an oven. Then placing them in common glass bottles, heating them up to almost 212°, then corking them up tight, sealing them over with wax. Moisture is necessary in the decomposition of vegetable substances; therefore, we think the above plan would answer. The Swedes have pursued this plan for preserving potatoes, for a great many years. On page 261, vol. 4, Scientific American, there is a method illustrated for preserving fruits, such as grapes, apples, \&c., by carbonic acid gas; it appears to be good. Those who can have ice houses built like the one illustrated a few weeks since, on page 356, of course will find it the best method of preserving fruit with its original flavor and freshness.

- 5 항․

Messhs. Editors-In 1828, Fin Baws. (millwright,) had occasion to true a circular piece of tin of about three inches in diameter, and for this purpose he put it into a quick lathe used for turning rake teeth, and held a ground file against it. To his surprise, the file was cut by the tin, instead of the latter by the former. Among other experiments he tried the gumming of saws with a piece of sheet tin in the same manner, but he found that it left such hard surface on the saw that it could not be filed. This led him to abandon further experiments in that line. At that time there was no Scientific American to record such experiments for the beneft of society.
Cleveland, Ohio.
O.P. Stevens.

In the British Cantain McClure
-it Commons, the committee charged with the consideration of the subject of rewarding Capt. McClure, for his discovery of the Northwest passage, have recommended that the sum of $\$ 25,000$ be presented to him.

Reaping Machines.
The American Farmer gives an account of a rial bet ween Hussey's, McCormick's, and Atkins' Reapers in a heavy field of oats. All of them worked well, but the self-raking attachment of Atkins is described as giving it a superiority over the others. The three machines cut 36 acres of oats in seven hours, or 12 acres ach.
gentleman of our acquaintance made a visit through a great portion of Long Island during the past week, to witness the farmers getting in their harvest. He was astonished at the great number of reaping and mowing machines employed, and the farmers assured him that but for them they would not have been able to secure their large crops. Hand help could not be obtained; good laborers were receiving $\$ 2$ per day and board, and enough of them could not be obtained at that. The reaping machines have proven to be "the farmers' best friends this season."

Progressing Backwards.
It is rumored that the British government are about to re-enact the newspaper stamp act The plan of throwing off the stamp duty of 2 cents on every copy printed, and substituting a postage charge to that amount when before mailed papers were sent free, does not work well for the government. There is a great falling off in the revenue.

A Book for Tinamiths.

In answer to some inquiries, John H. Hanna informs us, that a book named the Tinman's Guide, illustrated with copper and steel diagrams, was published by Thomas Quantril a tinsmith, in Washington, D. C., a few year since. It is the only work of the kind eve published in our country. The author is now no more; but his widow resides in Dover Ohio, and has the plates of the work and a re vised copy.

Steam Orzan.

A mechanic in Worcester, Mass., has built an organ to be operated with steam as a substitute for the air blast. The steam is used at a high pressure, and its tones can be heard more than three miles distant. Well, steam is a genius. He now whistles, sings, plows, spins, weaves, and a hundred other things, useful, sentimental, and musical.

Reform in We
We are informed by a correspondent-J. Edi, of Verona, Wis.-that Charles Durkee. Membe of Congress from that State, will make an effort to bring the subject of reforming our weights and measures, before the next Congress. We hope our readers in every Congressional Dist. will bring this subject to the notice of their representative. There will be very little opposition, we should think, to such a needed and common sense reform.

A Wonderful Voyace.
The Canadian Barque Arabia has recently made a voyage from Liverpool, England, across the Atlantic, thence up the St. Lawrence, to Quebec, and discharged a cargo of iron; then went up to Kingston, C. W., took a load of lumber and sailed up to Chicago. It is said however, that the form of vessels built for the Lake navigation, is unfitted for that of the stormy Atlantic.

Coal Birning Locomotive.

The "Taunton," a coal burning locomotive, constructed on Dimpfel's principle, which has been illustrated in our columns, has been running with great success for five weeks on the Reading Railroad. Anthracite coal is used for fuel on it. Another of the same class of en gines has been running on the Providence and Worcester Railroad, using Cumberland coal, with success.

To Keep Milk Sweet

A. Boyd, a correspondent, informs us, that he has practiced a peculiar method with much success of preserving milk sweet in the pans It simply consists in placing a piece of new han:mered iron, or three twelve penny nails in each tin pan, then pouring the warm milk on them. He believes that electricity has something to do with producing the result. He had tried many experiments before he hit upon this one, which he found to preserve the milk aweet for a longer time than other plans tried by him.

