Brinte mut grt.

The Art of Dyeing.-No. 28

Brown on Cotron-Ciatechu-This substance is very generally emploged for dyeing browns on cotton. The best quality of it contains about 36 per cent. of culoriug matter. It is of a darkish brown color, and resembles a hard gum. It is very soluble in water, in fact, good catechu is all soluble in cold water, and gives a clear solution. This is one reason why it is so convenient for tanning purposes. When it is dissolved in water, the solution has a gummy character, and yarn put into it, if dried without washing, is rendered sticky by the threads adhering to oue another. This viscons quality of catechu is overcome by metallic salts, and the kind most suitable for this purpose are those which yield their oxygen most easily. This is the reason why the salts of copper are most generally used in dyeing catechu culors. Still there are some things connected with the dyeing of catechu colors which are nut yet properly understood; for, if the sulphate of zinc be added to one solution of catechu, and the sulphate of copper to another, and separate pieoes of cloth run through them, and then through lime water, and afterwards exposed to the air, that which had been treated with zinc will become dark brown, but that treated with copper will not, although the copper yidds its oxygen more readily than the zinc. When catechu is oxydized, there is formed an acid nearly like gallic acid, which is of a deep brown color. This is formed when a catechu solution is treated with an alkali; but cotton run first throug's a catechu solution, and then through another of aceute of lead, gives a deep brown color without an alkali. Cotton goods impregnated with catechu and then passed through a solution of the bichromate of potash, acquires a deep brown color ; the catechu is oxydized at the expense of the chromic acid. These reactions of catechu show how vary flexible it is, or rather adaptable for the production of an unlimited number of shades of brown, from the darkest to the very lightest, descending through the whole series of drabs, fawns, de. To dye ten pounds of cotton goods a light brown color, dissol ve $1 \frac{1}{2}$ lbs. of good catechu in hot water, also $1 \frac{1}{2}$ ounces of the sulphate of copper (blue vitriol.) and place these in a tubof hot water. Handle the goods in this forten minutes, then lift them, and enter into auother tub of hot water, in which there bas been dissolved two ounces of the bichromate of potash. Handle in this for ten minutes, then lift them, wash, aud dry.
For a darker shade use two pounds of cat echu, half an ounce more of blue vitriol, and three ounces of chrome.
Some shades require four pounds of catechu, with biue vitriol and chrome in proportion, aud tiese given in two or three dips.The darkest shades of catechu are dyed by preparing the goods. steepiug them in a solution of sumac-two pounds to the tenfor twelve bours, then running them through lime water in one tub, and afterwards a copperas solution (one pound to the tea) in another, and thengiving them the catechu, blue vitriol, and chrowe, as has been described. Common catecla browas incline more to the reddish than the yHllow shade. Cotton dyed first a yellow color, with quercitron bark and the chluride of tin, if afterwards dyed a ligbt catecbu brown, as has been described, using sulphate of iron instead of copper, acquire a ricl brown colur, more incliuing to the olive shade.

Lithting Minea by Gas.

The numerous fatal aecidents in mines have given rise to many contrivances for preventing such evils. One of the mostingenious suggestions is from Mr. SeptimusPiesse, who proposes to illuminate the mines by means of coal gas. The gas is to be made " on the bank," that is, on the surface, and carried down the shaft and along the "rolley ways," by fixed piping in the usual way there to he kept constantly burning in
able gauze of wire round the flame. For supplying the lamp " in the galleries," where the actual workings are being carried on,
the gas is to be conveged by flexible tubing; by this means there will be no difficulty in moving the light to the position meeded by the miner. Each lamp is to have a cone of fine Davy gauze wire round the flame, and to be protected by an outer casing of coarse gauze, which will prevent the transmission of flame to any outward explosive mixture in the pit.-[London Mining Jour.

MACHINE FOR SHEARING SHEEP.

The accompanying figure is a top view of machine for shearing sheep, for which a atent was granted to Palmer Lancaster, of Burr Oak, Michigan, on the 24th of April last.
A A represent a top and bottom metallic plates secured a short distance apart by bolts or rods (the bottom plate ishid.) These plate may be of rectangular or other proper form. On the upper surface of the upper plate, A, there is a sliding frame, which works between suitable guides, b. The sliding frame is provided with an upright handle, C. At each side of this frame there is attached racks. D D, one being somewhat higher or projecting further up from the frame than the other. E represents a vertical shaft which works between the two plates, A; the upper end of this shaft extends a short distance above the upper plate, and has two pinions, F F, placed loosely upon it, one pinion being directly over the other. There are also on the shaft, E, two ratchets, $c c$, permanently attached to the shaft, the one being above the pinion, F, and the other below the other pinion, F. To each of the pinions, F, there is secured a pawl, d, the ends of which are kept agaisst the teeth of the ratchets by springs. The upper rack, D, gears iato the upper pinion, F, and the rack, D, on the opposite side of the frame gears in to the lower pinion, F. On the shaft, E, and between the two plates, A, there is attached a spur wheel, which gears into a pinion, H , baving a crank pulley, I, above it on the same axis. To the crank pulley there is attached a conuecting rod, J , the outer end of which is secured to an arm, R , of a series of cutters, f, which work on a pivot, g, the cutters being of saw teeth form, and attached to a common plate, L, through which the pivot, g, passes. The cutters, f, are directly over a series of stationary cutters, h, which are formed at the end of a plate, M, attached to the front end of the lower plate, A. The cutters, h, are of the same form as the cutters, f, but are in clined a little upward. The cutters, f, are very slightly inclined. To the back end of the lower plate, A, there is attached a bandle N , haviug a bow, O , at its end. The bow O, is placed under the shoulder of the oper ator, and may, if necessary, be secured there to by straps. The implement is placed upon the body of the sheep, and the bandle, C , is grasped by the right hand and moved back and forth, and a continuous rotary motion is given the spur wheel, in consequence of the pinions, F F, only being connected to the
shait, E, when turned in one direction, viz. shait, E, when turned in one direction, viz.
from left to right. This is effected by the pawls, $d d$. As the spar wheel gearsinto the pinion, H , a vibratory motion is given the cutters, f, by means of the conuectiag rod, K , and the cutters, f, work over the cutters, h, similar to the blades of shears, and wil cut the wool from the animal in a perfect and expeditious manner, the implement, of course, as it cuts, being moved over the body of the unimal.
The ad rantage of this invention, besides the rapidity with which it operates, is, that the implepeat will not mince or cut the

A Musquito Fan.
Joel Webster, of Brooklyn, L. I., informs us that he has in operation anapparatus tha keeps eight fans in operation for eighthours; that it is simple, and can be constructed for few dollars.

How Many Tiees make a Ship.
It requires 2200 full grown trees, or the matured crop of forty-four acres of woodland to furnish timber for a single 74 gun land to
ship.
wool twice, nor eut the animal, as is often done with the ordinary sheep shears. More information may be obtained by leter addressed to Mr . Lancaster.

To Furnace Makers.

A correspondent of the Providence (R. I.) Journal, states, that it has cost him more for coal when using heating furnaces than old fushioned andirons and grates. He states that it costs him about twice as much to heat his house by furnaces as by grates. He also asserts that a gentleman in this city, (N. Y.,) told him that one public school last winter consumed 110 tuns of coal, which used to be comfortably heated with 16 cords of wood. He concludes as follows :
"From all I can learn, I rather think that these figures present a tolerably fair view of the comparative expense of warming a
building by the old modes and by furnaces. It becomes us, then, to determine which mode of warming our houses we shall adopt. It also becomes the makers of furnaces to bring to their business a greater amount of skill, or we shall all be obliged to return to the old fashioned flre place and grate. If any of your readers will take the trouble to examine his coal bill for last winter, and compare it with the cost of warming by the old methods, I think that he will come to the same conclusion as myself."
If these statements are facts, it is high time that heating furnaces were abandoned for old fashioned grates. We however, can not acc

Inprovement is Furnaces.
The Missouri Republican (St. Louis) states that Ir. B. H. Washbern, of that city, has vented a method of feeding air to boilers ou the tornado principle. It thus describes :-
" Two connecting cones or funnels are insorted in the doors of the furnace, which in sures a steady draft, and give the air the form of the whirlwind. The ash pit is inclined at a good angle, reaching the bottom of the boiler from the door in the space of a few feet, and thus every particle of heat is saved and applied to the proper surface with the greatest intensity.
But as all inventions or improvements are very correctly looked u pon as possessing litthe merit without practical tests forecommesd them, we will state for the satisfaction of the public, that this application bas proved miuently successful, both with wood and coal, the trial having been thoroughly made at the Eagle Foundry. We have also had the funnels and inclined plane added to the team apparatus of this ffice, and after a careful measurement of coal, find the saving to be leasty twenty per cent. For further particuiars we reler to the foundry mentioned."
Dr. Washburn resides at Hannibal, Mo, and has a patent ou the connecting funnels he has also taken measures to obtain a pat ent on his inclined ash pit.

Mowing Machine Match.
The State Ayricultural Sociery of New

Jersey will hold a mowing match with mabines, on the land of Obadiah Meeker, of Elizabethtown, on the luth of this month. A premium will be awarded for the best machine.

LITEHABY NOTICES.

Inventors, and Manufacturers
The Tenth Volume of the Soibstipio Ambrions com menced on the 16th of September. It is an ILLUST'RAT-
ED PERIODCAL ED PERIODICAL, devoted chiefly to the promulgation Chemic Arts, Industrial Manufactures, Agriculture, Patents, Inventions, Engineering, Millwork, and all inter ests which theight of PRACTICAL SCIENCE is calco Ited to advanee.
Its general contents embrace notices of the
LATEST AND BEST SCIENTIFIC,
UHKMICAL AND AGRICULTURAL DISCOVERIES, -with Editorial comments explaining their application notices of NEW PROCESSES in all branches of Manu-
factures : PRACTICAL GINTS on Machinery : infor mation as to STEAM, and all processes to which it is ap plicable; also Mining, Millwrighting, Dyeing, snd all arts involving CHEMICAL SCIENCE; Engineering. Architecture : comprehensive SCIENTIFIC MEMOR
ANDA : Proceedings of gciantific Bodies; Accounts of news and informationupon THOCSANDS OF OTHEA SUBJEC'TS.
Reports of U. S. PA'TEN'TS granted are also pablished very week, including Orpioial Copres of all the PA-
TENT CIAIMS; these Claims are published in the entillc American in adranor of all otexr papura The Contribotors to the scientific American a among the MOST EMINENT scientific and practical men of the times. The Editorial Department is univer TY, and to be distin wiod and truthfulness of its discussions, but for the fearless. ness with which error is combated and false theories are ness with
exploded.
Mechani
Mechanics, Inventors. Engineers, Chemists, Mann-
(acturers, Agriculturists, and PEOPLE IN EVERY PROPEBSION in LIFE, will ind the Soiempirio Ameproig to be of great value in their respective callings. Its Coungels and suggestions will save them HUNDREDS F DOLLARS annually, besides afording them a 100 neyond pecuniary estimate.
The SCIENTIFIC AMERICAN is publighed once a Week: every number contains eight large quarto pages, orming annually a complete and splendid volume in
lastrated with SEVERAL GUNPRED ORIGINAL EM lastrated wit
GRA vings.

One Copy, for One Year	\%
Six Months	* 1
Pive copies, for Six Monthe	ns
Ten Copies for Six Months,	8
Ten Copies, for Twelve Monthe	18
Pifteen Copies for Twelve Monthe	023
Twenty Copies for Twelve Months	428

Southern, Western, and Canada Money taken at par
Sor Subscriptions. or Post Office Stamp taken at their par value. Letters should ve directed ipost-paid) to
MUNN $\& 00$.

