(For the scientific American.
My atteni in Las been drawn to Lunar in f rences by an article on the on the surject, a a recent No. of the Scientific American, eviewing one in the New- York Quarterly Your closing remark-"The question is not settled yet; there is still room for close observation and investigation." From careful and close observation, I am led to believe that almost all vegetable and ánimal nature are affected to some extent by the moon.First, as to timber. On the full moon, from $M_{1 y}$ until September of every year, the bark of almost all kinds of trees and shrubs, will peel off by the knife or axe, without any difficulty; when upon the change of the moon, the bark will adhere to the wood and can not be separated from it. That is asuniformly the case as the moon's changes, through the warm and growing season. And why is it so? It will be perceived on repeated, careful and proper examination, that it is a necessary order of nature to promote the unifurm growth of everything-trees, shrubs. grain, \&u. The rising and falling of the sap of trees is necessary to the support and expansion of the truuk and branches of the tree; the flood of sap (as the fluod-tides of the ocean) occur on the full moon, gradually increasing from the change to the full. As the moon enlarges her power, it is increased in proportion, and increases the volume of sap, which flood of sap gradually increased, s wells the bark of the tree and disengages it from the wood at the flood tide of sap; (then it is, that the bark peels so easily from the wood) and this is a necessary provision of nature-that the trunk and branches of the tree or plaut may expand or enlarge. On the wane of the moon, the nutritious properties ald gases of the flood being deposited, enlarges the trunk or branch to the swollen'bark, aud the excrescence returns to the earth, forming the pores during the wane, and the bark cleares to the wood again, and so alternates montbly.
I have observed, time and again, during long rainy periods, that all vegetation would assume a light-pale green color when the rays of the sun and moon were intercepted by clouds; and when at the time that grain was blouming or filling, the grain was small and inferior, and more particularly so if such rainy or cloudy period occurred near the full moon-the time most important for the expansion of the bloom and grain.
It is adritted that the moon has an influence upon the tides of the ocean, and consequently upon water. If the moon has an influence upon water, why not to a corresponding ex-
tent upon all matter that contains water or tent upon all matter that contains water or gases, in proportion to the water gas or muisture contaiued? It is agreed by all that ever tried the experiment. that moonsbine will spoil fish in less time than the sun, or any other position that fish can be placed in. And why so? Fish is of the water and contains more water and its gases, perhaps, than tlesh; the eye of fish is larger, generally, in proportion to its body than of animals -the eye contaius a fluid or water that spoils first-the moon has the greater influence upon the eye by reason of the focus; but pull the eye out or cut the bead off, and the fish will keep much longer.
If the moon has an influence upon the tide, fish, and timber or trees, which I do not doubt, why uot upon all animals, \&e., through the moisture and gases necessary to their the moisture and gases necessary to their
constitution and support. I bave been a strict observer of nature, and necessarily strict observer of nature, and necess
so baving been reared on the frontier. Ebenezer Ford.
Spring Cottage, Miss., June 12, 1855.
Gumming Saws.
rors-In No. 41
Messrs Edrrors-In No. 41 I noticed an article on gumming saws with a sheet iron buzz Parsons, the inventor of bis celebrated shearing machines, informed me, more than twenty years ago, that at that time the mill saws in Hoosac were gummed by a smooth sheet irou buzz going at a great vesmooth sbeet irou buzz going at a great ve-
locity, and yet our country willers, for the locity, and yet our country millers, for the
want of reading your valuable paper, and want of reading your valuable paper, and
gating this useful timeseaving information,
will continue to gnm their saws in the oldfashioned way till they die.

(For the Sientifor American. Sulphur for T.
 Sulohur for Tyees.

Eight years ago last spring the "borer" attacked several locust trees, which were back ward and sickly. I set to work and immediately trimmed them, ebaved off the rougb outer bark from the ground to a short distance above the first limb, and then scraped and washed the branches with an alkalinelye to remove the scurf, destroy the larva of insects, and promote a more free contact with the atmosphere. I then took a sbarp bit and bored a bole in each tree close to the ground, and extending to the center of each trunk. These I filled with common flour of sulphur, closing them with thin wooden disks, and sealing them over with wax to exclude the air. The effect of this treatment was magical. The borer disappoared : the foliage soon expauded, and as sumed a deep ricb color, and during the sea son there was an unusual deposit or increase of woods matter. Sulphur, I believe, is but one of many other agents which might be applied with success in agriculture and horticulture. We want more experiments of this cbaracter, in order to extend our knowledge, for, inmy opinion, there is a remedy for every disease, if we but knew where to find it, both for the vegetable and animal kingdoms The sulphur placed in the trees was no doubt
taken up by the sap, and distributed througb taken up by the sap, and distributed througb all their cells. It is necessary that a sbarp sit should be employed for boring the boles.
so as to cut clean through the minute tubes. and not bruise them, in order to allow the sap to flow freely, which it otherwise would not if a dull tool were used, because it would squeeze and close up the minute tubes or pores of the trees in the same manner that a
dull knife makes a wound more difficult to dull knife makes a wound more difficult to beal than a sbarp one.
H. W. Chamberlain.

New York, June 25 th. 1855.

The Mutaion of Mater.

With a very near approach to truth, the buman family inbabiting the earth bas been estimated at $700.000,000$; the annual loss hy death is $18,000,000$. Now the weight of the animal matter of this immense body cast in the grave, is no less than 624,400 tuns, and by its decomposition produces $9,000,000,000$, 000 cubit feet of gaseous matter. The veg000 cubit feet of gaseous matter. The veg-
etable productions of the earth clear away etable productions of the earth clear away
from the atmosphere the gases thus gener ated, decomposing and assimilating than for their own increase. This cycle of changes bas been going on ever since man became an cccupier of the earth. He feeds on the lower animals and on the seeds of plants, which, in due time, become a part of bimself. The lower animals feed upon the berbs and grasses, which, in their turn, become the an imal ; then, by its death, again pass into the atmospbere, and are ready ouce more to be assimilated by plants, the earthy or bony substance alone remaining n bere it is deposited ; and not even these unless sufficiently deep in the soil, to be out of the absorbent reach of the roots of plants and trees. Nothing appears to me so cannibalizing as to see a flock of sheep grazing in a country churchyard, knowing it to be an undeniable
fact that the grass they eat bas been nurtured by the gaseous emanations from my immediate prodecessors; then following up the fact that this said grass is actually assimilatad by the animal, and becomes mutton, whereof I may perbaps dine next week. "Truth is stranger than fiction," and bere is a truth that exemplifies the proverb. It is not at all difficult to prove that the elements of which the living bodies of the present generation are composed, bave all passed through millions of mutations, and formed parts of all kinds of animal and vegetable
bodies, in accordance with the unering law bodies, in accordance with the unerring law
of nature, and, consequently, we may say with truth that fractions of the elements of our ancestors form parts of oursel ves. Some of the particles of Cicero's or Esop's body, peradventure, wield this pen
London.
Septimus Piesse.

Steam Guns.
The present great war between the Allies (France and England) and the Russians, bas excited great attention to bringing the most powerful engines of destruction to bear up on the destiny of the struggle. The Minie rifle, the Lancaster gun, and many other recently invented war implements, bave all, for the first time, been brought into successful that the Allies are far from employing th most destructive means known to accomplish their objocts. Although great dependence was placed on the effects that were to be pro was placed on the effects that were to be pro appear that these bave effected much, although they bave caused the greatest amount of labor in placing them in position, and the greatest waste of ammunition ia sustaining them. If all stories are true, one of Perkins steam guns must be as effective as a bundred cannons, and we understand that the son of old Jacob stands ready to prove this, if they will but employ him. The experiments made with this gun in 1826. before the Duke of Wellington, Sir H Hardinge, and Lord Fitz roy Somerset (now Lird Raglan, rather as tonished those gentlemen. The following is an account of these experiments befure those military worthies, and others, from the London Times:
" The discharge of steam now became almost incessant for two bours, during which its incalculable force, and astonisbing rapidity in discbarging balls, excited amazement and admiration in all present. At first, the balls were discharged at short intervals, it imitation of artillery, firing against au iron target at the distance of 35 yards. Such was the force with which they were driven that they were completely sbattered to at oms. In the next experiment the balls were discharged at a frame of woud, and they ac tually passed through eleven one-inch planks of the bardest deal, placed at the distance of an inch from each other. Afterwards they were propelled against an iron plate one fuurth of an inch thick, and at the very first trial, the ball passed througb it. On all hands, this was declared to be the utmost ef
fort of force that gunpowder could exert.Indead, we understand that this plate had been brought especially trom Woolwich, for the purpose of ascertaining the comparative force of steam and gunpowder. The pressure of steam employed to effect this wonder ful force, we learnt on inquiry, did not at first exceed 65 atmospheres, or 900 lbs . to the square inch; and it was repeatedly stated by Mr. Perkins, that the pressure might be carried even to 200 atmospheres with perfect
safety. Mr. Perkins then proceeded to dem onstrate the rapidity with which musket balb might be projected by its agency. To effect this, be screwed on to the gun barrel a tube filled with balls, which, falling down by their own gravity into the barrel, were projected. one by one, with such extraordinary velocity as to demonstrate, that by means of a suc cession of tubes filled with balls, flxed in a wheel (a model of which was exbibited, nearly one ibousand balls per minute might be discbarged. In subsequent discbarges or volleys, the barrel, to which is attached a movable joint, was given a lateral direction. and the balls perforated a plank nearly twelve reet in length. Thus, if opposed to a regiment in line, the steam gun might be
made to act from one of its extremities to made to act from one of its extremities to
the other. A similar plank was afterwards placed in a perpendicular position, and i like manner, there was a stream of shot boles from the top to the bottom. It is thus proved that the steam gun has net only the force of gunpowder, but also admits of any direction being given to it. But what seemed to create most surprise, was the ef:-
fects of a volley of balls discharged against the brick wall by the side of the target. They absolutely dug a bole of considerabie dimensions in the wall, and penetrated almost one-balf througb its thickuess. We that, had the officers declare firon instead of lead, they would bave acuually made a breach througb it-the wall was mineteen inches thick."

European Inventious, Discoveries, \&c.
Temperature for Tempering Steel-For boring cylinders, turning rolls, or any large cast iron, let it be as bard as water will make it, minding not to heat it more than a cherry red.
Tools for turning wrought iron, pale straw
color, color,
430° Fahr Smail tools for ditto, ebade of darker yellow, 450 Tools, for screw taps, \&c., still darker straw color 490 For batchets, chipping chisels, brown yellow

For small rimers, \&c., yellow slightly tinged with purple

purple

550
purple
For flne saws, daggers, \&e., dark
blue
For band and pit saws, \&c., pale
blue . . . 59
The temper greatly depends on the quality of carbon there is in the steel; this the prac ical man soon finds out, and be tempers or draws down bis touls accordingly.-[H. Scrivener, Liverpool, England.
Submarine Railfay between Evgland and France-There is, it appears, once more a serious intention of uniting England and France by a submarine railway. The latest projuct is that of Dr. Payerae, who, with 40 subaqueous boats, of which be is the inventor, 1500 sailors and navies. $4,340,000$ cubic yards of material, and $£ 10,000000$ sterling expense, would undertake to construct a tunnel, by means of which the strait that separates the two countries would be crossed in 33 minutes. The position of this tunnel would be, no doubt, nearly parallel with that of the electric telegraph, and contigu ous to it, as being the narrowest part of the channel, as well as that where the depth of the water is the least.
Improvements in Blowing Macilines-Mr. C. F. Vauthier, of Dijon, France, bas paten-t-d a new modification of blowing apparatus, consisting of a cylinder and piston, with solid piston rod passing througb a stuffing. box in the top of the cylinder, and a bolluw one tbrough the botton, througb which the air is ejected. Both covers bave annular -paces, with valves of iadia-rubher, or other suitable substance, opening inwards for the admission of air. At each stroke ot the ma. chine the air is drawu into the cylinder, and forcibly expelled through the bollow piston rod.

Gin Francisen Mint.

The San Francisco Chronicle states that the Branch Mint, in that city, is now in full blast, refining and coining gold at the rate of $\$ 100,000$ perday, and will continue to do so throughout the year. It alludes, bowever, to a dark prospectior the want of acids, for refining, of which the mint uses 2000 lbs . per day. The Chronicle says the size of the mint ought to be increased to a capacity for coining $\$ 50,000,000$ per annum, and it bopes the next Congress will pass a bill to this effect. Wo bope this will be done.

The California Pine.

R. Lawson, of Ediuburgh, Scotland-a dis tinguisbed forester-says of the California pine (P. insignis): " 1 bis beautiful tree soon towers above those which bave been planted many years before, and when the forests of California supply us with its cones on more moderate terms, it will probably become the staple pine of our forests."

Cleveland Railroad Care

Wasson \& Co., Cleveland, Obio, now employ 100 men in making railroad cars, and hey bave recently made a contract with the Detroit and Milwaukie road to be filled within three years, for different kinds of cars, the stock of whicb will cost nearly $\$ 600,000$.

Tests of Boiler Iron.

We bave necessarily delayed for a week or two, the pablishing that part of the report of the Inspector for the St. Louis Dist., on the above subject.

