THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Scientific American,

poblished weekly
At 128 Filton Btreet. N. Y. (Bun Buildiago.) O. D. м

 Reeponsible A A enten mag allo be fou
citios and towns in the United States.
 TERM8- 82
in aix monthe.

Improvement in Galvanic Batterles,
The accompanying engravings represent an improvement in connecting clamps for the plates of galvanic batteries, for which a patent was granted to Charles T. Chester, of this City (New York,) on the 15 th of last May.
The nature of the invention consists in the use and combination of brass clamps with insulated wooden supports, so that the plates inmersed in the exciting fluid are insulated from each other, thus preventing local action, while at the same time the plates can be removed, cleaned and replaced, or their size increased or diminished without stopping the action of the battery.
Fig. 1 is a perspective view of one modifi cation of the improvement connected to :the plates, without the cups ; and fig. 2 is another modification of it applied to a battery of five cups; T T represent the cups; P P represent the platina, and $Z Z$ the amalgamated zinc plates. A is a piece or strip of highly jnsulated wood haviag secured to it on opposite sides (6 g .1 ,) metal clamps, B, for holding the zinc and platinized plates, Z P. These are secured in position by thumb screws, as shown, and the connection between the clamps is made with stout copper wires, C C. S S represent binding screws for making the circuit connections with wires from one battery to another. In fig. 2, A represents the same insulated wooden bar, but the clamps are all on one side of it, and no wire connections like C C (fig. 1) are used. Each clamp has two screws for binding the plates, the one for a platina plate, P, in one cup, and the other for a zino plate, Z, in another cup, as shown, and thus no two plates in one cup have a metallic connection. The plates are varnished above the liquid in the cups to prevent the acid flowing up by capillary attraction and injuring the screws of the clamps, and the insulating quality of the bar, A. It will be observed that a platecan be put in and taken up by merely turning one of the screws to the right or left, thus affording the greatest facility for cleaning and changing them.
The tumblers or cups are coated with Faraday's Electrophorus, and all communication is thus cut off with the surface of the glass cells. The advantages derived from these arrangements, we conceive, will be appreciated at a glance by those acquainted with gal vanic apparatus. The prevention of local action in the individual cells, and crossfire between the different cells, the facility afforded for taking out the plates, cleaning, and changing them, by substitating an extra plate in the battery, when one is lifted out, so as not to iuterrupt the fiow of the current are all evident. The solution used in this battery is dilute sulphuric acid, and one has been in use for five months without being taken down. It is cleanly and healthy, and can be kept in the operator's room, requiring to be noticed but once a-day, and not a constant attendance day and night, like Grove's battery. The battery of Grove is compact and very powerful, but it is expensive and unhealtiy. It requires a separate room be-

IMPROVEMENT IN GALVANIC BATTERIES.

cause the noxious fumes given off by the nitic acid are dangerous. It has also to be re newed very often, and is very irregular in its action. It involves much local action, wastes its force, and soon eats itself up. This so also the case with that of Daniels, and every other diapbragm battery. Smee's battery is more economical than these, but it is inconvenient for separating the elementoshifting and changing the plates. The bat-

IMPROVED VALVE FOR STEAM ENGINES.

The annexed engravings represent animproved induction and eduction valve for steam engines, for which a patent was granted to Thomas Goodrum, of Providence, R. I., on the 3rd of April last.
Figure 1 is a perspective view of the valve apart from its seat and casing; fig. 2 is a longitudinal section of the same applied to a double cylinder steam engine, and fig. 3 is a transverse section in the line, $x x$, figure 2. Similar letters refer to like parts.
This invention consists in a hollow cylindrical or cosical valve of novel construction, which receives a rotary motion corresponding with that of the engine shaft, and may control the induction and eduction of steam to and from one, two or more cylindera. It also consists in an appliance to the said valve, to serve the purpose of a variable cut-off; and furthermore, it consistain a certain manner of arranging the said valve, whereby the steam passages leading from the valve to the cylinder or cylinders are shortened to the greatest possible degree.
A is the valve casing or seat, consisting of a tube of about the same length as the engine cylinder, which is bored out very slightly conical in order to grind the valve in tight and allow the wear to be compensated for. This casing is arranged parallel with the cylinders, B B, and bolted securely thereto, and has openings, $a a$, and $a a$, made in it at either end to match with the steam porta, $b b b b$, at the ends of the cylinders. C is the valve which is fitted steam tight to the casing, and is bored oat from end to end cylindrically or slightly conical, and has journals, $c c^{\prime}$, working through stuffing boxes in the closed ends of the casing, A. It is intended to have steam supplied constantly to its interior from the induction pipe, k, which enters the casing, A, at one end, and for that purpose openings, $l l$, are made in or uear the end which io next the steam pipe. It has near the ends, but on opposite sides, two openings, $d d^{\prime}$, in the interior, each extending nearly half around it, and being of such length as to cover the openings or ports, $a a$, in the casing. Opposite to the openings, $d d^{\prime}$, are two cavities, $e e^{\prime}$, which also extend nearly half way round the valve, corresponding exactly in that respect with the openings, d d^{\prime}, and are united by a cavity, f, which oxtends all around the valve so as to communicate at all times with the eduction pipe, g, which is placed at or near the middle of the length of the casing. These openings and cavities in the valve only leave for ita bearing surfaces the two rings, $h h^{\prime}$, at or near the ends which bear outaide the steam ports; the divisions, $i i$ and $j j$, between the steam openings, $d d^{\prime}$, and their corresponding exhaust openings, and the guards, $m^{2} m^{\prime}$, on the inner ends of the steam openings. The cut off consists of a spindle, n, with journals fitted to turn in bearings within the journals of the valve, carrying two semi-cylindrical heads, o o, fitting to the interior of the valve opposite to the steam openings, $d d^{\prime}$, the said heads carrying two plates, $p \boldsymbol{p}$, which fit lengthwise to the openings, $d d^{\prime}$, and which fit to the interior of the valve casing, B. The heads, $o o^{\prime}$, and their plates, p p, are capable of contractiug the openings, $d d^{\prime}$, to any desired extent in a circular direction, by being turned to a suitable position within the valve, The turning ofthe cut-off is effected by means of an endless screw, q, of very quick pitch, on the end of the spindle, n, which projects through the journals of the valve, and a nut, r, which fits to the said screw, but is prevented turning by pins, s s, or their equivalents connected with the valve. By sliding this nut back or forth by means of a slider

