Sitinutific ${ }^{2}$ mmerican.

NEW YORK, FRBRUARY 24, 1855.

Improvements in Steam Navigation.
During the past week, we have been led to examine a new system of steam propul sion, devised by Capt. H. Whittaker, of Bufsion, devised by Capt. H. Whittaker, of Buf-
falo, N. Y., which is at once bold and origifalo, N. Y., which is at once bold and origi-
nal. It consists in applying one or more screw propellers to both sides of vessels, and driving them with short stroke, high pressure engines, with direct application to the cranks on the shafts of the screws. The models which we examined were mounted with locomotive cylinders, set inclined, and transversely to the length of the propeller shafts, to which their rods were connected by straps exactly as those of locomotives are connected to their driving wheels. By employing strong and capacious cylinders of short stroke, and connecting their piston rods directly to the cranks of the propeller shafts, a high velocity can thus be obtained, without intermediate gearing. Two or more cylinders may be yoked to one propeller shaft, and the number of engines and propellers (three or four sometimes on one side) are designed to be increased according to the size of the vessel. The plan is simply the applying to steam propellers in water, the same principle that is now employed on railroads. No one will dispute the simplicity of the method over that of the complex and massive marine engines in common use. That the machinery can be made strong and solid enough to accomplish the object, no one will dispute. Capt. Whittaker also designs to exhaust his steam into a large fresh water tank in the lower part of the vessel, which will thus be converted into a huge surface condenser. The object sought to be accomplished by this, is to use fresh water for ocean navigation, and to save as much heat as possible ; thare is, no doubt, a great loss of heat in common marine boilers, caused by repeated blowing out of the brine water, also by scale accumulating on the plates.Any safe plan for obviating such losses deserves attention. Capt. Whittaker is an old and experienced commander on our upper lakes, and during the past year his improvements have been applied, on Lake Erie, to ments have been applied, on Lake Erie, to
the steamboat Baltic, which had run for six years previously with paddle wheels. The old engines were taken out, and two short stroke, high pressure engines put in, and the screw propellers placed where the paddle wheels had been-the shafts and upper lobes of the propellers being above the water.This new plan of propulsion enabled the Baltic to carry two hundred tuns more cargo, and to run with an increased speed of four miles an hour, and all this with a great saving of fuel. As the only way of proving the economy of any invention is by fair and continued trials, here we have this new plan of steam propulsion already submitted to this test, and with success. It has alwaysappeared to us that the stern of a vessel was the wrong place for the screw. No good reason can be given why it should be placed there any more than a paddle wheel, andjwe cannot but believe, that a screw placed on each side of a vessel, with the same power applied, will propel a vessel with greater steadiness, and much faster than with one screw in the stern,-the common method of serew propulsion. We are aware that it is no new proposition to applyscrew propellers to the sides of vessels, but this in combination with the method of driving them, as has been done by Capt. Whittaker, is original. It would be a strange thing if a revolution in ocear propulsion were effected by our inland navigators. We understand that semisubmerged propellers, on account of their economy and speed, h\&ve driven off, within the past four years, nearly all the paddle wheel steamers from our upper lakes. This is something which should arrest the attention of our marine engineers, and they should investigate the causes.
We are among the number of those who
believe that we are far from having arrived
$\left\lvert\, \begin{aligned} & \text { at perfection in steam navigation, and this } \\ & \text { new plan, we must say, has made a favorable }\end{aligned}\right.$ impression on our mind. We, however, dislike the noisy, puffing, high pressure engine, on a steamboat, and have a partiality for on a steamboat, and have a partiality for
the low pressure condensing engine forocean the low pressure condensing engine forocean
navigation. The simplicity of the former however, as applied by this new method of steam navigation, has much to recommend
it, and we would really like to see it, as prot, and we would really like to see it, as pro-
posed, applied to some of our steamships. posed, applied to some of our steamships.

Combustion and Fires.

The fire which burns in a grate or stove, and which spreads its cheerful and life-sustaining warmth around, affords a subject for deep reflection and scientific study.It has been said by one philosopher that "a knowledge of fire-to generate and maintain t-makes all the difference between man and brute." This thesis, curious though it be, contains a great deal of truth. Just let us ask the question, " what would man be without fre?"' and we will at once perceive in searching for an answer, that it lies at the foundation of all art. Without it there would be no instruments forged, consequent ly no houses built, and man would be no better off than the wild beast of the jungle. With fire, metals are smelted, and instru ments for agriculture, architecture, and the arts fabricated, and upon these are based al hat is useful and ornamental in physical science. And what is fire? Simple though the question is, it is not so easy to answer it, and like all other propositions in philosophy, we must be content to describe its operations, for that is all which we call laws. Fire or combustion is produced by a change of state, or condition of two or more bodies, during which period heat is produced by the substances undergoing change. There are three kinds of combustion, viz., instantaneous, high, and low. The former is witnessed in explosions; the second in common fires, and the third in the human body, the oxydation of metals, \&c. Everything capable of combining with oxygen is called combustible, and according to the rapidity with which it com bines with oxygen, so is the combustion quick or slow. Common gas which we usse in cities, burns with a high heat, but not very fast, and will not explode when a light is applied to it, but if a certain quantity of it be mixed with seven times its volume of the atmosphere, it will explode instantaneously when touched with a match. In gunpowder we have the same elements as gas-for instantaneous combustion-but in a
solid state. Iron, when rusting,-oxydizing -developes heat, but this is not noticed, the action being slow, and the heat dissipated as fast as it is formed. But if pure iron be reduced to fine powder, and thrown into the atmosphere, it will fall down in sparks and burn at a glowing heat. If it were not for this quality of iron-its readiness to combine with oxygen, and thus burn slowly away, by the action called rusting-it would be more valuable in the arts. It is no doubt the most valuable of all metals as it is, but could it be mproved as notto rust and still maintain its qualities of forging and tempering, its value would be greatly enhanced. The amount of heat produced in any body by combustion, depends on the relative quantity of oxygen absorbed in a given time. Boiled linseed oil absorbs oxygen with great rapidityabout eight times its bulk in twelve hours, hence articles saturated with this oil are liable to spontaneous combustion. A substance which, by its nature, is known to be combustible, that is, has a great affinity for oxygen, combines with it fast or slow according to the heat of one or both of the substances. Thus with anthracite coal, although it is a combustible substance, it will not produce combustion in contact with and every person knows that the higher the heat to which it is exposed, so much more rapidly does combustion go on. Ships containing bituminous coal have been consumed by spontaneous combustion in warm climates,
but seldom, if ever, in cold. Cotton waste, saturated with boiled oil, will undergo spontaneous combustion at 120°, in about forty
minutes, and from this cause, many facto-
ries have taken fire. Wood, in contact witb hot water 160°, has Watcbfulness against tires, therefore, is more imperative in warm than in cold apartments. A difierence between 50° and 110°, trebles the tendency of painters' oil to ignite spontancously. A piece of phosphorus, if placed on a plate of iron, will oxydize, without burning, because the iron conveys the heat away as fast as it is formed, while on the other hand, if it be putamong some cotton wool, it will very soon ignite, because the cotton does not dissipate, but accumulates the heat, and produces an increasingly energetic action.
For spontaneous combustion, the following conditions are necessary:-1. A substance capable of uniting with oxygen with considerable vivacity, (or others capable of unitin together.) 2. A supply of oxygen. 3. A comparatively large absorbing surface. 4. Sufficient mass to prevent the heat formed from being readily dissipated ; or a constantly sustained heat from 70° to 212°. The various things known to be liable to spontaneous combustion are sulphur and iron, iron pyrites, coal which contains the above, carbon, when in powder and mass, whether lampblack or bituminous coal, especially when heated and moist. Compounds of phosphorus, luciter matches, sawdust moistened and heated, all oils, and things in which oil is much used, seeds containing much oil are all liable to ignite.
It is our opinion that many fires take place in our cities every winter from a want of knowledge relating to combustion. Wehope this information may be the means of preventing their frequency.

The annexed figure is a perspective view of a very neat and ingenious application of the stereoscope to daguerreotype medallions. A patent for this improvement was granted on the 16th of last month, to J. F. Mascher, of Phila.-who is well known to the readers of the Scientific American-for a number of useful inventions. C is the main central rim of a locket; B B are two lids with daguerreotype pictures, E E, on them; these lids are hinged on each side of the rim, C. A A are two supplementary lids, each containing a lens, D D. These are also hinged to ${ }^{\circ}$ rim C, as shown, but are fitted to fold within the picture lids, B B, and are arranged in such relation to the same, that upon being opened and properly adjusted, the lenses, D D, will stand opposite to the pictures, and convert the medallion into a stereoscope, by which a person looking through the glasses, D D, will see but one picture, solid and life-like. The patentee has applied double convex lenses to these medallions-the sides of which are of unequal convexity (as one to six)-according to Brewster, so that the picture is rendered very clear. A medallion of this character can be used for a microscope and sun glass, and thus it can be carried around in the pocket, both as an ornamental and useful memento of affection.
More information may be obtained by letter addressed to J. F. Mascher, No. 408 North Second street, Philadelphia, Pa.

Manufacture of stone.

We have seen during the last week a very fine sample of artificial stone, of an ornamental character, manufactured on Coney Island, near this city. The stone is made of sand clay, and common salt, cheap materials, and found in great abundance and parity where the factory has been established. The manufacture is the subject of a patent grant-

1853, the claims of which will be found on page 318, Vol. 8, Scientific American. Mr. Seuss, who showed to us the sample of artificial stone, stated that it had been tested by exposure to the atmosphere, in water, and to a crushing force, and had stood all these tests well. It has not only all the appearance of fine sand stone, but it is in reality such, and it appears to us that for ornamental architecture, it must come into extensive use, as it can be manufactured much cheaper than rock stone can be cut.

A Scientific Error Corrected
In all recent works on comparative physiology, the dogma has been propagated that existing osseous fishes have heterocercal tails in their embryonic state (tails with the upper lobe longer than the lower one while young) which disappear as they are matured, their tails becoming homocercal-that is, the upper and lower lobe of the tail equally developed, the earlier fishes being heterocercal. Agassiz has pointed it out as a law, that the modern fishes, at one part of their existence, are heterocercal, but change in their mature state to the homocercal. This dog mahas been seized upon by the developement theorists, and used with some effect. In the last number of the Westminster Review, the fallacy of this dogma is pointed out, and Agassiz is severely criticised for carelessness. It is there stated that this theory was adopt ed from the memoir of M. Vogt-a German physiologist-on the developement of one of the salmon tribe. He, along with Agas siz, jumped to the conclusion without an examination, that all homocercal fishes were developed like the salmon. The reviewer asserts that the anatomical structure of the tail of the perch and mackerel-homocercal fishes-is not the same as the salmonoid tribes, but that they are homocercal from the first, and always remain so. The reviewer also asserts, that the heterocercal tail in fishes is an advance in developement, therefore as the earlier fishes have heterocercal taile, the argumentis a strong one against the progressionists, who insist that the homocercal tail is a developement of the heterocercal.

The Polytechnic Journal Gone.

In thelastnumber of the above named Journal, the editor, J. J. Greenough, Esq., informs his patrons that it will be no longer published. This Journal was commenced two years ago in this city, by J. J. Greenough, Dr. C. G. Page, and C. L. Fleischman. High hopes were entertained of its success when first published. Mr. Fleischman is now in Paris, Dr. Page in Washington, and Mr. Greenough has concluded to stop its publication. It is a very difficult task to manage and conduct a periodical devoted to science and the arts The Polytechnic Journal contained much useful infcrmation, and we regret to see its light so early extinguished.

Electro-Plating Applied to Cutlery.
The improvements which have been made in the art of electrotyping, and the diversity of purposes to which it is now applied, almost surpass belief. It is used to make plates for printing bank notes, maps, common printing cuts, and type; also plated ware and many other things. One of the most useful applications that we have seen of it lately, is its application to table cutlery, by Joseph Hill, Electro-plater, No. 159 Atlantic street, Brooklyn. T'he utility" of silver plating table cutlery, is the prevention of rust ; the articles afterwards never requiring to be scoured, and have only to be wiped dry with a towel or buckskin after use, and always look bright and clear. We understand that a number of the leading hotels of our city have had their cutlery elec-tro-plated, and have effected a great saving thereby.

Muntz Metal Tubes in Boilers.
In the last number of the London Artisan, a correspondent who had read R. Armstrong's letter on Muntz metal for bolts and sheathing, directs attention to their exten sive use in steam boiler tubing. He confirms the statements respecting the brittleness of the brass bolts and sheathing.

Maportedomcialy for the Scientific American.]
LISTOFPATENT Claims Iesued from he United States Patent Office. for the weet ending february 13, 1855.

 aled by hibe co
as described.

 Cinvss-E. B. Clement of Barnel,

 extend them, subsiantially set fort

 c.

 The loop wen the shatte is forced through the same, as
seicied.
Sires

 forth.

 structed. secured, and arrasabed in manner and for the pu
poses sei forthe

 on tither on on
as see forth.

The Way to Build up a State.
Governor Grimes, of Iowa, in his inaugural address, thus describes the wants of the thriving State over which he presides
"She wants educated farmers and mechanics, engineers, architects, metallurgists, and geologists. She needs men engaged in the practical duties of life, who have conquered their professions, and who are able to impart their knowledge to others. She wants farmers who shall be familiar with the principles of chemistry as applied to agriculture ; architects and mechanics who will adorn her with edifices worthy of so fair a land; and her resources, and thus augment the wealth her resources, and thus augment the wealth
and happiness of her citizens. This want
a school of applied sciences. I have no hesitation, therefore, in recommending that a university fund be appropriated to establish a practical scientific or polytechnic school.

New Petritled Bodies

The Dayton (Ohio) Empire, gives an account of some bodies which were buried some years ago, near that city, having beome petrifications. The bodies were the wife and grandchild of G. P. Loy, and were buried on a little knoll on his farm in the
Miami Valley. He opened their graves to remove them to his family lot in a new cem. etery, when, on coming to the coffin of his first wife, who had been buried twenty-four years before, it was found to be perfect in form, but could not be raised on account of its great weight. It was at last lifted by six nen, when its lid was removed, and the body appeared to be perfect. Upon a close examination it was found that the remains would not give way under the pressure of a piece of board which one of the gentlemen placed upon the corpse, and this strange cir cumstance led to still further investigation.
The shroud, and indeed all the covering which was upon the body at the time of interment, 24 years ago, had disappeared-not a vestige of them remained. The body was perfect, except the right leg, from the knee to the ankle joint, where the flesh seemed to have wasted away, and lay at the bottom of
the coffin, in a substance resembling sand. With this exception of decay, the body and imbs exhibited the same perfectness of exerior they did when in life
The body had become petrified! It was by some quality of the earth turned into stone of a drab, or, more properly speaking, desh color.
The grave of the grandchild of Mr. Loy was next entered, and the coffin exhumed. It was also found to be heavy, and when opened the corpse presented much the same appearance as that of Mrs. Loy. It was not as perfect, however, although petrified. The most remarkable thing connected with the remains of the child was, that the hair upon
the petrified skull was to all appearance the same as life! The other bodies which were exhumed-one or two in number-were only partially petrified.
There is a petrifaction-that of an Indian -in the British Museum, taken from the Island of Guadaloupe, and said to be the oldest of a human being in the world. In the work of Gliddon and Newton, on the diversity of the human race, this Guadaloupe petrification is spoken of as a most wonderful curiosity, and affording evidence of the great length of time-more than forty thousand years-that the human race has lived upon our continent,-the great length of time required to form the petrification being alleged as a reason for this conclusion, but
the facts now brought to light in Ohio shows upon what very slender data they have formed their opinions. It appears to us that we have read of bodies having been found petrified, in other places, a few years after interment, but we cannot lay our hands upon the source of information at present.

How the World was Made.

Messrs. Editors-I would like the privilege of a few remarks on an article headed "Age of the World," on page 165, in which you review an able effort of Rev. John 0 . Means, to reconcile the Genesis' account of creation with the science of geology, $\& \mathrm{cc}$.
The Reverend gentlemen reasons well, no The Reverend gentlemen reasons well, no doubt, but I apprehend, from wrong premises. There seems to be greater dificullies in " way than the length of days, or "periods," created, as he maintains, three long periods before the sun, moon, and stars, the question arises, " did it revolve or remain stationary ?" If it revolved, according to the philosophy of motion, it must have flown off in a straight line ; it it remained stationary, I can see no upport it If atre but the "turtle's wack our guides in speculating on these questions, we should apply them thoroughly to every theory or hypothesis, whether physical or
with this test, they should be received as of very doubtful reliability. It seems to me, therefore, that it is not in keeping with reason and philosophy, to suppose the creation and consequent action of the minor (our earth) before the major and central body the sun.) Surely the earth is not the prin cipal body for which these great and magnif icent systems, which Astronomy reveals to us, were created, and of which our solar system forms but a small part ; and then to hink our earth forms but an insignifican portion even of that.
In view of these considerations it seems to me contrary to reason, and the laws and philosophy of motion to suppose the earth created before the sun, moon, and stars.

David Palmer.

Batavia, N. Y, Feb. 12, 1855

[If there were no other planet or body than the earth in the universe, unless it received an impulse, it would neither move of, nor in a straight line, nor require the turtle's back to holditup. Mr. Meansisnot wrong in his premises here. But as he is a believer in the nebularhypothesis, his conclusions are somewhat contradictory, because it assumes that the matter of which the earth is composed rota ted around that of the sun, as a center, wita the matter of the moon, planets, and stars, outside. This dogma is positively negative to the sun or the stars being made after the earth. We must also say, as our correspondent has directed our attention to this question, that Mr. Means has endeavored to give a very wrong and unfair exposition of the plain meaning of the word water. In the Scriptures, describing the second act of creation, it is stated, "God said let there be a flrmament in the midst of the waters, and let it divide the waters from the waters," -the waters below from the waters aboveand it was so." In reference to this language Mr. Means saye, "if the waters spoken of were matter in a gaseous state, the separation would be the process by which nebule were detached fron the mass and formed into worlds. No one can atfirm that such was not the character of the waters," "the word water is not evidence that it was not gaseous matter."
The word water used here, he assumes, along with Prof. Guyot, means gas-nebula. Now let us take his explanation of the word water, and apply it to the third day'sacts in Genesis, and see what a wretched exposition he makes of it.
It would read, "Let the gas, or nebula, under the heaven (thisgas, be it remembered, is the water below, that was separated from the water above) be gathered into one place and let the dry land appear, and it was so ; and God called the $\alpha r y$ land earth, and the gathering together of the gas, or nebula, called He seas." If Mr. Neans and Guyot are correct in their way of explaining these descriptions in Genesis, to prove the nebular hypothesis, their logic leads to the absurd scientific conclusion that the moon is a globe of water.
Our correspondent's reasoning with regard to the sun being the major body of the solar system, and could not be created after the earth ; and that the latter was not the principal body for which the sun was made-ac-
cording to the Genesis account, is very natual, but we do not think it profound. Why should not the sun be created for the earth? If the sun contains no living intelligence (and who believes it does) the earth contains far higher and more elevated objects of creation. Man was created after our globe was formed, yet is man not a more noble work of creation than a dead world?

- $\rightarrow+\boldsymbol{+}$

At a recent sitting of the Paris Academy of Sciences, the prize for astronomy was divided amongst MM. Luther, belonging to the observatory of Blik, near Dusseldorf ; Marth, attached to Bishop's observatory at London Hind, belonging to the same observatory Ferguson, attached to the observatory at Washington ; Hermann Goldschmid , historical painter, and Chacornad, attached to the observatory at Paris-each of these person
having discovered a small planet in 1854 .

