Scientific Ammritun.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

FIELD'S TRAVELING BRIDGE.

The annexed engravings illustrate the traveling bridge for which a patent wasissued on the 25th of April, last year, to Frederick Field, formerly of Michigan, but now of No. 15 Laight street, this city (N. Y.) Fig. 1 is a perspective view of a bridge in motion, according to this plan. Fig. 2 is a plan view. Fig. 3 is a perspective view of a pier with its guide and anti-friction rollers. Fig. 4 is a cross section of the spring grip posts on the center of a pier, and fig. 5 is a transverse section of the guide post, g. Similar letters refer to like parts.

The nature of the invention consists in ${ }^{\text {a }}$ apart, to allow vessels to pass between them, new mode of crossing navigable rivers with- and to allow the bridge to be sustained and out obstructing navigation, the main feature properly balanced on them, according to its of which is a traveling bridge propelled over length, while in motion. $c \boldsymbol{c}$ are belts of fricand upon piers, so placed in the water as to tion rollers, secured in boxes in each pier, to leave sufficient room between them to allow allow the bridge to slide over easily. $g g$ vessels to pass. A is the traveling bridge, are guide posts with roller caps, one on each which can be built with a cabin for passen- side of a pier; they have top flanges, which gers, a space for carts and carriages, or for take into a long channel in the side of the railway cars in the middle. E represents an bridge, and serve to guide and keep it steady. engine house, with engine and boiler on each $0 n$ the bottom of the bridge there are two side, to move the bridge. P P P represent sprocket wheels, D D, on two shafts, and over fiers built in the river, at proper distances these pass an endless chain, C , which is made

with links to take into the center cog, f, of the spring post, d, and work like a pinion
and fixed rack. The engines in the bridge are and fixed rack. The engines in the bridge are
geared to drive the shaft of one sprocket wheel, D , and the chain thereby gives motion, by taking into the cog post, f, on the pier, and thus acting to move forward the bridge. When the end of the chain, C, comes to a pier, it is necessary to be released from biting or catching on the cog, f. This is done by a cam placed on each side of the sprocket wheel, D , which cams press upen the adaptable incline ways, $e e$, of the spring post, d, and force f down below the level of contact with the chain, C , thus allowing the bridge to roll along from pier to pier, as shown. This embraces the whole of the parts of this bridge, and the mode of its operation, all being very simple and plain. It will also be observed, that no sooner does the cam wheels on the shaft of the sprocket, D, on the forward end of the bridge pass over the cog, f, than it, the spring cog, immediately springs up and takes into the link of the chain.
The following are the results of an estimate of the dimensions and capacity of the Traveling Bridge made by the patentee:
"A bridge 600 ft . long, its gravity 400 tuns, will transport a train of cars 400 feet long, 250 tuns, locomotion included'; spaces between the pier: 150 feet; tractive power, when the friction rollers are used, will be 1500 lbs ; if wheels with axles are used, the tractive power will be 5625 lbs .; speed 4 miles an hour. Steam power equivalent to that of an ordinary locomotive where the axle wheel is used, but where the friction rollers are used the power may be reduced in the same ratio with the traction required. Presuming the main heft of the bridge to root equally
upon three piers; the lateral pressure upon the
piers when motion is produced, will be as folpiers when motion is produced, will be as fol-
lows:-When only one chain is used, the lat eral pressure on the pier to which the chain is attached will be $\frac{2}{8}$ of the amount of the tractive power required to produce motion and that in a direction opposite to the one in which the bridge moves; and upon the other two piers will be each $\frac{1}{8}$ of the same amount, in the direction the bridge moves. If three chains are used, drawing upon three pins, the traction on the chain will just equal the pier, hence an equilibrium will be the result, atmospheric retistance and tendency to quiscence excepted."
The main design of the inventor in the construction of this traveling bridge, is to provide railroad companies with a convenient method of crossing navigable rivers where drawbridges are objectionable, but it may also be used as a substitute for a ferry boat. It is designed to afford the means of crossing broadrivers, over which the expense of constructing long bridges are very great, and the keeping of them in repair no less so.
At such places as Albany, N. Y., and Havre de Grace, Md., where ferry boats are used to cross the rivers, to connect railroad lines, and where the waters are frozen in winter, such a bridge would afford convenient crossing during all seasons. The idea is a novel and bold one. Can it be carried out successfully, or is it inoperative? Several distinguished engineers, we have been informed, have pronounced a favorable verdict, and concur in the opinion that it is economical and practicabe. That such a bridge can be constructed and operated, who can doubt, in the present

Of.course it is not to be expected but improvements will be made upon it, but its economy Whets workings, is the main question.this company or association wilt We hope we have more than one that will do hope
this.

The patentee does not confine himself to he exact mode of propelling the bridge, as here represented.
More information may be obtained of the patentee by letter addressed to (or otherwise) him at his residence, mentioned above, where working model can be seen. Tailed Men.
In London, our foreign exchanges say there is on exhibition a man, woman, and child of the Niams from Central Africa, a tribe which have the vertebre so prolonged
as to form a tail. It is our opinion tha these are relatives of the wooley horse.

Saponaceous Cream of Almonds.

The preparation sold under this name is a potash soft soap, made with lard and perfumed with essential oil of almonds. It has a beautiful pearly appearance, and makes an excellent lather with a brush, and has met with an extensive demand as a shavingsoap, especially in Paris. It is prepared thus:-Take of fine clarified lard, 7 lbs ; of potash lye, containing about 26 per cent. of caustic potash, 3 lbs .12 oz ; of rectified spirit, 2 oz .; of essential oil of almonds, 2 drachms. Melt the lard in a porcelain vessel, by a salt water bath or a steam heat under 15 lbs . pressure, then let in the lye very slowly, agitating continually from right to left during the whole time; when about half the lye is run in, the mixture begins to cur dle; it will, however, finally become so firm and compact that it cannot be stirred, it the operation is successful. The soap is now finished, but is not pearly; it will, however, assume that appearance by long trituration in a mortar, gradually adding the alcohol, in which is previously dissolved the perfume

Septimus Piesse.

London.

Wooden Car sintiags.
Most of the cars in the Pennsylvania coal trade have wooden springs. These are simply two pieces of ash, say eight feet long and six by two inches, bolted together, and supporting the boxes. As the result of three years' experience, it has been found the first cost of the wooden springs is but one-third that of steel, and the cost of maintenance less than one-half.

