
[Reported Offcially for the Sclentlic American.] LISTOFPATENT CLAIMS for the weex ending september 5, 1854.

 and sconrine it

 same timert, qiinitick it
ranged as deacribed.

 Shaving a oam carity, or recess ducing therein a roller, 8 s set forth.

 coll

 and

 Hon back
forth.
[See not

and de
and
tion at
I als

save that it should be of about blood warm temperature, and are allowed to remain there in five or six days, which latter operation should be repeated for six or seven times when the side will generally be found to be completely tanned. Whilst passing through each stage of this said Tanning Process the sides should be repeatedly handled, as all tanners are fully aware.'
This is a description of the process. Practical tanners will perceive that neither acids nor alkalies are used for raising the hides, but that the salt sumac liquor is employed for the preparatory, and the common tan liquors for the finishing process. The invent or is an old experienced tanner, and he says : "the salt sumac liquor enters at once into the pores to the very heart of the sides, and so acts upon them, as to give them an exceedingly pliable yet firm basis, and so prepares them that the strongest liquors of oak or hemlock, \&c., may afterwards be ap plied without binding or injuring the hides.' Tanning is a chemical process, and consists in applying such substances to the skin of animals as will combine with them, and form a compound firm, pliable, and insoluble in water, which we term "leather." It is easy to make leather, but there are as many qualities of it as there are of cloth. The tanning processes, to make good leather, are tedious and expensive, requiring months to complete all the operations. To shorten the time required in the process, many plans have been employed, and numerous substances used to bloat the hides, so as to allow the tan-
ning to combine rapidly with their gelatine. Some of these have, indeed, shortened the process, but at the expense of the quality of leather, it being rendered very brittle hence a general, and perhaps a just prejudice exists among practical tanners against new processes in this art. No such prejudice can exist against this new process, as no new sub stances are used. The sole leather which we have seen made by it will bear the most se vere scrutiny. We have also been assuren that the sole leather made by this process, from sweated Buenos Ayres hides, will make sew-
ed work equally as well as the limed slaughter hides. The le as well as the limed strong The length of time required for tanning a dry Buenos Ayres hide is ninety days, with seventy-five per cent. gain. The time required for tanning an Oronoco hide is much less with a gain of eighty or eighty-five per cent This method will tan slaughter sole leather in thirty days; harness or upper leather in the rough in twenty days, and calf-skins in from sir to twelve days."
We believe the public is more deceiv ed, and gets less real value for their mon ey, in common boots and shoes than any other article used as parts of human covering. The lighter kinds of shoes especially, sold in the stores, are a disgrace to the tradc both as it respects the sewing and the leather. The uppers are generally made of glazed shrepskin, about as thick and strong as old-fashioned brown paper, and the sewing, which is now performed in many instances by machines, is so carelessly executed as to bring into disrepute-unjustly, we think -the character of those machines. In conversation, a few days ago, with a journey man carpenter, in our city, who has a family of five children, he declared it impossible for him to keep his family in such shoes as were sold at the stores." He had, from necessity been compelled to learn the art of making boots and shoes for his children, and one pair of his own making, he assured us lasted four times as long as a "market pair." This should not be, for we are convinced that the lighter as well as the heavier kinds of leather can be made far better than most of that which is now generally used, and we hope this new process of tanning will be the means of effecting a total reformation in the character of the material for makingcommon boots and shoes.
Information respecting the rights of Mr Enos' process, may be obtained by letter ad dressed to him, at Binghampton, N. Y.

The Mammoth Steamer.

Messrs. Editors-In your number for Au
moth Steamship now building in England for the Eastern Steam Navigation Co. ; and as I have no doubt that any authentic information especting this great undertaking will be ineresting to yourself and readers, I send herewith an extract from a letter received by me from my friend W. S. Garland, principal draughtsman to the firm of James Watt \&Eo., of Birmingham, England, who are constructng one set of the engines for this ship :-
" You will probably have heard of the Eastn Steam Navigation Co.'s great ship now building by Scott Russell at Millwall, but in ase you have not seen any authentic particulars of her size, I will give them to you. Her length is 680 feet (double the length of the Himalaya,) 83 feet beam, and 58 feet deep in hold ; capacity 10,000 tuns register ; 23,000 uns builder's measurement. She is to have crew engines, which we are making, having our 84-inch cylinders 4 feet stroke; and paddle wheel engines̈, making by Scott Russell, having four 74-inch cylinders and 14 feet stroke (oscillators.) The power of the screw engines taking them at 7 lbs . and 45 revolutions $=1692$ horses ; the paddle-wheel engines at 12 revolutions $=1228$ horses, making 2920 nominal horse power ; but as steam of 25 lbs. is to be used, we may assume that the actual power exerted will be four times the nominal, or nearly 12,000 horses. Screw is proposed o be 24 feet diameter, with a 40 feet pitch, and the speed is calculated at 18 or 19 miles per hour-draft about 28 feet."
R. H. Davies.

Philadelphia, Aug. 28th, 1854.

Piston Packing and Lightuing.

Messrs. Editors-On looking over your val able journal of the 19th, I noticed an arricle headed "Piston Packing and Lightning," which is in most part correct except the "pumps," hich contain no valves whatever; the chest containing the valves is seperate from that conaining the piston.
I will here state that the engine is non-condensing, and at the time of the occurrence was orking quite slow. There was one of the most errific storms, accompanied with continuous ightning. Very suddenly the engine changed ermotion, asstated in the former article. On er amining the valve chest, I found both suction alves (5 feet apart) entirely off, which must have been instantaneous, as, if one valve had remained in its proper condition, the head of ater would have been partly maintained, the pump being double acting.
After repairing damage, \&c., I found the rub ber was nearly melted. The idea that lightning had melted the valves was frst suggested by several scientific gentlemen of this city; the only question with me is, what could have melt ed the rubber, which is always covered with water when the engine is in motion! I will lso state that I have found other proofs of ightning. D.C. Creginr, First Engineer
Chicago Water Works, Aug., 1854.

Explosive Well.

The Buffalo Democracy says that a singular occurrence, resulting in a melancholy maner, took place recently, in the town of Hamburg, in this county. An Irishman was enaged in digging a well, and after getting down to the depth of some eighteen or twen ty feet, found signs of water very perceptible. At last he struck his pick through a thin layer of slate, and with a noise like thunder, sufficiently loud to be distinctly heard all ver the neighborhood, a stream of mingled as and water burst through the orifice, intantly killing the unfortunate man, and filling the well to the depth of ten or twelve feet of water. Gas still escapes profusely, and the water is in constant and violent moion, resembling a large cauldron of boiling fluid.

Use of Soluble Glass.

A soluble glass has been applied to the woodwork and scenery in the Munich Theater, for the purpose of preserving, and as far possible, rendering them incombustible This glass is, in fact, a solution of free silicia in caustic alkali ; and if the wood is properly seasoned, there can be no doubt of the value of the application.

